函數(shù)y=3cosxcosx的最小正周期是
 
考點:三角函數(shù)的周期性及其求法
專題:三角函數(shù)的求值
分析:函數(shù)解析式利用二倍角的正弦函數(shù)公式化為一個角的余弦函數(shù),找出ω的值,代入周期公式即可求出最小正周期.
解答: 解:y=3cosxcosx=3cos2x=
3
2
(1+cos2x)=
3
2
+
3
2
cos2x,
∵ω=2,
∴最小正周期T=
2
=π.
故答案為:π
點評:此題考查了三角函數(shù)的周期性及其求法,熟練掌握周期公式是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

對于任意正整數(shù)n,證明:2(
n+1
-1)<1+
1
2
+
1
3
+…+
1
n
<2
n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

袋中有3個白球,3個紅球和5個黑球.從中抽取3個球,若取得1個白球得1分,取得1個紅球扣1分,取得1個黑球得0分.求所得分數(shù)ξ的概率分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:1-a•2x≥0在x∈(-∞,0]恒成立,命題q:?x∈R,ax2-x+a>0.若命題p或q為真,命題p且q為假,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x-3|-2,g(x)=-|x+1|+4.
(Ⅰ)若函數(shù)f(x)的值不大于1,求x的取值范圍;
(Ⅱ)若不等式f(x)-g(x)≥m+1的解集為R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(選修4-4:坐標系與參數(shù)方程)
已知直線l的參數(shù)方程為
x=2t
y=1+2t
(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρcos2θ=sinθ.設(shè)直線l與曲線C交于A,B兩點,則
OA
OB
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)圓x2+y2=a2+b2與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)在第一象限的交點為P,若雙曲線的左、右焦點分別為F1、F2,且tan∠PF2F1=
3
2
,則雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-9lnx在區(qū)間(0,a)上不存在極值點,則a的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2-4x+6(x≥0)
x+6
 
(x<0)
,則滿足f(x)>f(1)的x取值范圍是
 

查看答案和解析>>

同步練習冊答案