已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且a=2,b=3,cosB=
4
5
,則sinA的值為
 
考點(diǎn):余弦定理,正弦定理
專題:三角函數(shù)的求值
分析:由cosB的值,求出sinB的值,再由a與b的值,利用正弦定理即可求出sinA的值.
解答: 解:∵△ABC中,a=2,b=3,cosB=
4
5
,即sinB=
1-cos2B
=
3
5
,
∴由正弦定理
a
sinA
=
b
sinB
得:sinA=
asinB
b
=
3
5
3
=
2
5

故答案為:
2
5
點(diǎn)評(píng):此題考查了正弦定理,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體三視圖如圖所示,則這個(gè)幾何體體積等于(  )
A、
1
2
B、2
C、1
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

持續(xù)性的霧霾天氣嚴(yán)重威脅著人們的身體健康,汽車的尾氣排放是造成霧霾天氣的重要因素之一.為此,某城市實(shí)施了機(jī)動(dòng)車尾號(hào)限行,該市報(bào)社調(diào)查組為了解市區(qū)公眾對(duì)“車輛限行”的態(tài)度,隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:
年齡(歲) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75]
頻數(shù) 5 10 15 10 5 5
贊成人數(shù) 4 6 9 6 3 4
(Ⅰ)請(qǐng)估計(jì)該市公眾對(duì)“車輛限行”的贊成率和被調(diào)查者的年齡平均值;
(Ⅱ)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記被選4人中不贊成“車輛限行”的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望;
(Ⅲ)若在這50名被調(diào)查者中隨機(jī)發(fā)出20份的調(diào)查問卷,記η為所發(fā)到的20人中贊成“車輛限行”的人數(shù),求使概率P(η=k)取得最大值的整數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A、B、C的對(duì)邊,且滿足:
2b
sin2A
=
c
sinA

(Ⅰ)求角C;
(Ⅱ)求函數(shù)y=3sin2A+sin2B+2
3
sinBsinA的單調(diào)減區(qū)間和取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)組織漢字聽寫比賽,共有4所學(xué)校的7名同學(xué)參賽,其中甲學(xué)校有2人參賽,乙學(xué)校有3人參賽,其余2所學(xué)校各有1人參賽,若比賽中有3人獲獎(jiǎng),則這3人來自3所不同學(xué)校的可能情況的種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,已知a2+a9=5,則3a5+a7的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足1+cos2πx=
(x+2y)2+1
x+2y
,則x2+(y+1)2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序,輸出的正整數(shù)n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序.若輸入的x∈[0,2),則輸出的結(jié)果可能是(  )
A、-1B、0C、1.5D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案