已知p:方程x2+mx+1=0有兩個(gè)不相等的負(fù)根;q:方程4x2+4(m-2)x+1=0無實(shí)根.若p或q為真,p且q為假,求m的取值范圍.
m≥3或1<m≤2.
【解析】本題考查命題的真假判斷與應(yīng)用,對兩個(gè)命題為真時(shí)進(jìn)行化簡,正確理解“p或q”為真,p且q”為假的意義是解題的關(guān)鍵.
先對命題p,q為真是,求出各自成立時(shí)參數(shù)所滿足的范圍,再根據(jù)“p或q”為真,p且q”為假判斷出兩命題的真假情況,然后求出實(shí)數(shù)m的取值范圍
解:若方程x2+mx+1=0有兩個(gè)不相等的負(fù)根,則解得m>2,即p:m>2.
若方程4x2+4(m-2)x+1=0無實(shí)根,則Δ=16(m-2)2-16=16(m2-4m+3)<0,解得1<m<3,即q:1<m<3.因p或q為真,所以p、q至少有一個(gè)為真,又p且q為假,所以p、q至少有一個(gè)為假.因此,p、q兩命題應(yīng)一真一假,即p真q假,或p假q真.所以或
解得m≥3或1<m≤2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
m |
y2 |
2-m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com