為了得到函數(shù)y=2sin(2x+
π
6
)的圖象,只需把函數(shù)y=2sinx的圖象( 。
A、向左平移
π
6
個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍(縱坐標(biāo)不變)
B、向左平移
π
6
個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?span id="r39n57n" class="MathJye">
1
2
倍(縱坐標(biāo)不變)
C、各點(diǎn)的縱坐標(biāo)不變、橫坐標(biāo)變?yōu)樵瓉淼?倍,再把所得圖象向左平移
π
12
個(gè)單位長(zhǎng)度
D、各點(diǎn)的縱坐標(biāo)不變、橫坐標(biāo)變?yōu)樵瓉淼?span id="rt1vd9r" class="MathJye">
1
2
倍,再把所得圖象向左平移
π
6
個(gè)單位長(zhǎng)度
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答: 解:把函數(shù)y=2sinx的圖象向左平移
π
6
個(gè)單位長(zhǎng)度,得到的函數(shù)解析式為:y=2sin(x+
π
6
),
再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?span id="jttxptr" class="MathJye">
1
2
倍(縱坐標(biāo)不變),得到的函數(shù)解析式為:y=2sin(2x+
π
6
),
故選:B.
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):函數(shù)圖象的變換問題平移變換和伸縮變換,屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x、y滿足約束條件
x+y-4≥0
x-y-2≤0
x-3y+4≥0
,則z=2x-2y的最小值為( 。
A、
1
2
B、
1
4
C、
1
6
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,a,b,c為角A,B,C所對(duì)的邊,且b(3b-c)cosA=
CA
CB

(1)求cosA的值;
(2)若△ABC的面積為2
2
,并且邊AB上的中線CM的長(zhǎng)為
17
2
,求b,c的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若某算法框圖如圖所示,則輸出的結(jié)果為(  )
A、7B、15C、31D、63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,AD垂直于AB和CD,側(cè)棱SD⊥底面ABCD,且SD=AD=AB=2CD,點(diǎn)E為棱SD的中點(diǎn).求異面直線AE和SB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的程序框圖,如果輸出的函數(shù)值在區(qū)間[
1
4
1
2
]
內(nèi),那么輸入實(shí)數(shù)x的取值范圍是(  )
A、[-2,-1]
B、(-∞,-1]
C、[-1,2]
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=4n-102,則數(shù)列從第
 
項(xiàng)開始值大于零.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐D-ABC的頂點(diǎn)都在球面上,且AB=6,BC=8,AC=10,當(dāng)頂點(diǎn)D在球面上運(yùn)動(dòng)時(shí),三棱錐D-ABC的體積的最大值為72,則該球的半徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)=
b-2x
2x+1+a
定義域?yàn)镽,其中a,b為常數(shù).
(1)求a,b的值;
(2)若函數(shù)g(x)=log2(bx2-3x+m)(m∈R)的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案