為了應(yīng)對(duì)國際原油的變化,某地建設(shè)一座油料庫,F(xiàn)在油料庫已儲(chǔ)油料噸,計(jì)劃正式運(yùn)營后的第一年進(jìn)油量為已儲(chǔ)油量的,以后每年的進(jìn)油量為上一年年底儲(chǔ)油量的,且每年運(yùn)出噸,設(shè)為正式運(yùn)營第n年年底的儲(chǔ)油量。(其中
(1)求的表達(dá)式
(2)為應(yīng)對(duì)突發(fā)事件,該油庫年底儲(chǔ)油量不得少于噸,如果噸,該油庫能否長(zhǎng)期按計(jì)劃運(yùn)營?如果可以請(qǐng)加以證明;如果不行請(qǐng)求出最多可以運(yùn)營幾年。(取
(1);(2)該油庫最多只能運(yùn)營4年,第五年開始無法正常運(yùn)營,因此不能長(zhǎng)期運(yùn)營。

試題分析:(1)依題意油庫原有儲(chǔ)油量為噸,可得     
                              ……3分
得:                                                       ……5分

是以為公比,首項(xiàng)為的等比數(shù)列                               ……6分

                                                       ……7分
(2)若時(shí),該油庫第n年年底儲(chǔ)油量不少于噸。
,                               ……9分
化簡(jiǎn)得:                                                                 ……11分
    
該油庫最多只能運(yùn)營4年,第五年開始無法正常運(yùn)營,因此不能長(zhǎng)期運(yùn)營               ……14分
點(diǎn)評(píng):數(shù)列的通項(xiàng)公式及應(yīng)用是數(shù)列的重點(diǎn)內(nèi)容,數(shù)列的大題對(duì)邏輯推理能力有較高的要求,在數(shù)列中突出考查學(xué)生的理性思維,這是近幾年新課標(biāo)高考對(duì)數(shù)列考查的一個(gè)亮點(diǎn),也是一種趨勢(shì).隨著新課標(biāo)實(shí)施的深入,高考關(guān)注的重點(diǎn)為等差、等比數(shù)列的通項(xiàng)公式,錯(cuò)位相減法、裂項(xiàng)相消法等求數(shù)列的前n項(xiàng)的和等等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)是否存在實(shí)數(shù),使得函數(shù)的定義域、值域都是,若存在,則求出的值,若不存在,請(qǐng)說明理由.
(2)若存在實(shí)數(shù),使得函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003516669432.png" style="vertical-align:middle;" />時(shí),值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003516747571.png" style="vertical-align:middle;" /> (),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù),則等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)如果函數(shù)的單調(diào)減區(qū)間為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖像過點(diǎn)的切線方程;
(3)證明:對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知映射,在映射的原象是(  ) 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖像與軸有兩個(gè)交點(diǎn)
(1)設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為試判斷函數(shù)有沒有最大值或最小值,并說明理由.
(2)若在區(qū)間上都是減函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖給出了函數(shù),的圖象,則與函數(shù),依次對(duì)應(yīng)的圖象是(    )
A.①②③④B.①③②④
C.②③①④D.①④③②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)在區(qū)間的導(dǎo)函數(shù)為在區(qū)間的導(dǎo)函數(shù)為若在區(qū)間恒成立,則稱函數(shù)在區(qū)間上為“凸函數(shù)”,已知,若對(duì)任意的實(shí)數(shù)m滿足時(shí),函數(shù)在區(qū)間上為“凸函數(shù)”,則的最大值為(   )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)函數(shù)為奇函數(shù),且在上為增函數(shù),  , 若對(duì)所有都成立,求的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案