15.點(diǎn)M(1,1)到拋物線y=ax2準(zhǔn)線的距離為3,則a的值為( 。
A.$\frac{1}{8}$B.8C.$\frac{1}{8}或-\frac{1}{16}$D.$\frac{1}{8}$或-16

分析 求出拋物線的準(zhǔn)線方程,利用點(diǎn)到直線的距離公式求解即可.

解答 解:拋物線y=ax2化為:x2=$\frac{1}{a}$y,它的準(zhǔn)線方程為:y=-$\frac{1}{4a}$,
點(diǎn)M(1,1)到拋物線y=ax2準(zhǔn)線的距離為3,
可得|1+$\frac{1}{4a}$|=3,解得a=$\frac{1}{8}$或-$\frac{1}{16}$.
故選:C.

點(diǎn)評(píng) 本題考查拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知數(shù)列{an}滿足a1+2a2+3a3+…+nan=n+1(n∈N*),則數(shù)列{an}的通項(xiàng)公式${a_n}=\left\{{\begin{array}{l}{2(n=1)}\\{\frac{1}{n}(n≥2)}\end{array}}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在區(qū)間[0,π]上隨機(jī)取一個(gè)數(shù)x,使$-\frac{{\sqrt{3}}}{2}<cosx<\frac{{\sqrt{3}}}{2}$的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.采用系統(tǒng)抽樣方法從960人中抽取32人做問卷調(diào)查,為此將他們隨機(jī)編號(hào)1,2,…,960,分組后在第一組采用簡(jiǎn)單隨機(jī)抽樣的方法抽到的號(hào)碼為29,則抽到的32人中,編號(hào)落入?yún)^(qū)間[200,480]的人數(shù)為( 。
A.7B.9C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.直線x+y=1與雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1  (a>0,b>0)交于M、N兩點(diǎn),若以M、N兩點(diǎn)為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求$\frac{1}{{a}^{2}}-\frac{1}{^{2}}$的值;
(2)若0<a≤$\frac{1}{2}$,求雙曲線離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.二次函數(shù)y=ax2+bx和反比例函數(shù)$y=\frac{x}$在同一坐標(biāo)系中的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)定義在R上的函數(shù)f(x)對(duì)于任意x,y都有f(x+y)=f(x)+f(y)成立,且f(1)=-2,當(dāng)x>0時(shí),f(x)<0.
(1)判斷f(x)的奇偶性,并加以證明;
(2)解關(guān)于x的不等式f(x+#)+f(2x-x2)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸是x軸,拋物線上的點(diǎn)M(-3,m)到焦點(diǎn)的距離等于5,
(1)求拋物線的方程.
(2)過點(diǎn)P(-4,1)作直線l交拋物線與A,B兩點(diǎn),使弦AB恰好被P點(diǎn)平分,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=$\frac{\sqrt{3-mx}}{m-2}$(m≠2)在區(qū)間(0,1)上是減函數(shù),則實(shí)數(shù)m的取值范圍是( 。
A.(0,2)B.(2,3)C.(-∞,0)∪(2,3)D.(-∞,0)∪(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案