如圖,在五棱錐P一ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,∠ABC=45°,AB=2
2
,BC=2AE=4,△PAB是等腰三角形.
(1)求證:平面PCD⊥平面PAC     
(2)求四棱錐P一ACDE的體積.
考點:棱柱、棱錐、棱臺的體積,平面與平面垂直的判定
專題:空間位置關系與距離
分析:(1)要證平面PCD⊥平面PAC,只需證明平面PCD內的直線CD,垂直平面PAC內的兩條相交直線PA、AC即可;
(2)直接求出底面面積和高,再求四棱錐P-ACDE的體積.
解答: 解:(1)證明:因為∠ABC=45°,AB=2
2
,BC=4,
所以在△ABC中,由余弦定理得:AC2=(2
2
2+42-2×2
2
×4cos45°=8,解得AC=2
2
,
所以AB2+AC2=8+8=16=BC2,即AB⊥AC,
又PA⊥平面ABCDE,所以PA⊥AB,
又PA∩AC=A,所以AB⊥平面PAC,又AB∥CD,所以CD⊥平面PAC,
又因為CD?平面PCD,所以平面PCD⊥平面PAC;
(2)由(1)知CD⊥平面PAC,所以CD⊥AC,又AC∥ED,所以四邊形ACDE是直角梯形,又容易求得DE=
2
,AC=2
2
,
所以四邊形ACDE的面積為
1
2
2
+2
2
)×
2
=3,
所以四棱錐P-ACDE的體積為
1
3
×2
2
×3=2
2
點評:本題主要考查空間中的基本關系,考查線面垂直、面面垂直的判定以及線面角和幾何體體積的計算,考查識圖能力、空間想象能力和邏輯推理能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,AB為⊙O的直徑,C為⊙O上一點,AD⊥平面ABC,AE⊥BD于E,AF⊥CD于F.求證:
(1)平面BCD⊥平面ACD;
(2)BD⊥平面AFE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點.已知1和-1是函數(shù)f(x)=x3+ax2+bx的兩個極值點,
(1)求實數(shù)a和b的值;  
(2)求f(x)在[0,2)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

坐公交上班,355車10min一趟,466車15min一趟,則等車時間不多于8min的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將一顆質地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b,設復數(shù)z=a+bi.
(1)設事件A:“z-3i為實數(shù)”,求事件A的概率;
(2)當“|z-2|≤3”成立時,令ξ=a+b,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a=
1
4
,b=log3
8
5
,c=log5
3
,則a,b,c之間的大小關系是(  )
A、a>b>c
B、b>c>a
C、c>a>b
D、c>b>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A在直線x-y=0上,點B在直線x+y=0上,線段AB過(-1,0)且中點在射線x-2y=0(x≤0)上,則線段AB的長度為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是底面半徑為1,母線長均為2的圓錐和圓柱的組合體,則該組合體的側視圖的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1,(1≤x≤2)
x-1,(2<x≤3)
,若a∈(0,1)時,函數(shù)g(x)=f(x)-ax(x∈[1,3])的最大值與最小值的差為h(a),則h(a)的值域是
 

查看答案和解析>>

同步練習冊答案