6.已知直線3x+(3a-3)y=0與直線2x-y-3=0垂直,則a的值為( 。
A.1B.2C.4D.16

分析 利用直線與直線垂直的性質(zhì)求解.

解答 解:直線3x+(3a-3)y=0與直線2x-y-3=0垂直,
∴$\frac{3}{3-{3}^{a}}•2$=-1
解得a=2,
故選:B

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意直線與直線垂直的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知$θ∈(0,\frac{π}{2})$,若直線xcosθ+2y+1=0與直線x-ysin2θ-3=0垂直,則sinθ等于( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.“a=b”是“a2=b2”成立的充分不必要條件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分又不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-sin\frac{π}{2}x,-3≤x≤0}\\{|lo{g}_{2}x|.x>0}\end{array}\right.$,若方程f(x)=a有四個(gè)不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則x3(x1+x2)+$\frac{1}{{x}_{3}^{2}{x}_{4}}$的取值范圍為(  )
A.(-1,+∞)B.(-1,1)C.(-∞,1)D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,點(diǎn)A,B是單位圓O上的兩點(diǎn),A,B點(diǎn)分別在第一,而象限,點(diǎn)C是圓O與x軸正半軸的交點(diǎn),若∠COA=60°,∠AOB=α,點(diǎn)B的坐標(biāo)為(-$\frac{3}{5}$,$\frac{4}{5}$).
(1)求sinα的值;
(2)已知?jiǎng)狱c(diǎn)P沿圓弧從C點(diǎn)到A點(diǎn)勻速運(yùn)動(dòng)需要2秒鐘,求動(dòng)點(diǎn)P從A點(diǎn)開(kāi)始逆時(shí)針?lè)较蜃鲌A周運(yùn)動(dòng)時(shí),點(diǎn)P的縱坐標(biāo)y關(guān)于時(shí)間t(秒)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知點(diǎn)P(2,0)及圓C:x2+y2-6x+4y+4=0.
(1)設(shè)過(guò)P直線l1與圓C交于M、N兩點(diǎn),當(dāng)|MN|=4時(shí),求以MN為直徑的圓Q的方程;
(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過(guò)點(diǎn)P(2,0)的直線l2垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)α:x≤-5或x≥1,β:2m-3≤x≤2m+1,若α是β的必要條件,求實(shí)數(shù)m的取值范圍m≤-3或m≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=x-$\frac{1}{x}$.
(Ⅰ)判斷f(x)的奇偶性;
(Ⅱ)用函數(shù)單調(diào)性的定義證明:f(x)在(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=-x2-2x,g(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{x+1,x≤0}\end{array}\right.$.
(1)求g[f(-1)]的值;
(2)試判斷方程f(x)=g(x)解的個(gè)數(shù),并判斷其中一個(gè)解在區(qū)間(0,1)內(nèi).

查看答案和解析>>

同步練習(xí)冊(cè)答案