已知f(x)=-x2,g(x)=2x-m,若對(duì)任意x1∈[-1,3],總存在x2∈[0,2],使f(x1)≥g(x2)成立,則實(shí)數(shù)m的取值范圍是
 
考點(diǎn):函數(shù)恒成立問(wèn)題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:條件對(duì)任意x1∈[-1,3],總存在x2∈[0,2],使f(x1)≥g(x2)成立等價(jià)為上f(x)min≥g(x)min即可.
解答: 解:∵x1∈[-1,3],∴-9≤f(x1)≤0,
∵x2∈[0,2],∴1-m≤g(x2)≤4-m,
若對(duì)任意x1∈[-1,3],總存在x2∈[0,2],使f(x1)≥g(x2)成立,
則f(x)min≥g(x)min即可,
即-9≥1-m,
解得m≥10,
故答案為:[10,+∞)
點(diǎn)評(píng):本題主要考查函數(shù)值的大小比較以及不等式恒成立問(wèn)題,將條件轉(zhuǎn)化為求函數(shù)最值之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={-1,1,3,2m-1},集合B={3,m2},若B⊆A,則滿足條件的實(shí)數(shù)m的集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列1,-3,5,-7,9,…的一個(gè)通項(xiàng)公式{an}=( 。
A、2n-1
B、(-1)n(2n+1)
C、(-1)n(2n-1)
D、(-1)n+1(2n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,a,b,c為角A,B,C所對(duì)的邊,3bcosA=ccosA+acosC.
(Ⅰ)求cosA的值;
(Ⅱ)若△ABC的面積為2
2
,a=3,求b,c的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求x2-2x-3>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)為奇函數(shù),且在(-∞,0)內(nèi)是減函數(shù),f(3)=0,則x f(x)<0的解集為(  )
A、(-3,0)∪(3,+∞)
B、(-∞,-3)∪(0,3 )
C、(-3,0)∪(0,3 )
D、(-∞,-3)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱,又已知f(x)在(0,+∞)上為減函數(shù),且f(1)=0,則不等式
f(-x)+f(x)
x
<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖已知△ABC,∠C=90°,|
CA
|=|
CB
|=2,D是AB中點(diǎn),P是邊AC上的一個(gè)動(dòng)點(diǎn),則
DP
BC
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

討論函數(shù)f(x)=x2-2ax+3在(-2,2)內(nèi)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案