【題目】2016年某市政府出臺了“2020年創(chuàng)建全國文明城市(簡稱創(chuàng)文)”的具體規(guī)劃,今日,作為“創(chuàng)文”項目之一的“市區(qū)公交站點的重新布局及建設”基本完成,市有關部門準備對項目進行調(diào)查,并根據(jù)調(diào)查結(jié)果決定是否驗收,調(diào)查人員分別在市區(qū)的各公交站點隨機抽取若干市民對該項目進行評分,并將結(jié)果繪制成如圖所示的頻率分布直方圖,相關規(guī)則為:①調(diào)查對象為本市市民,被調(diào)查者各自獨立評分;②采用百分制評分, 內(nèi)認定為滿意,80分及以上認定為非常滿意;③市民對公交站點布局的滿意率不低于60%即可進行驗收;④用樣本的頻率代替概率.

(1)求被調(diào)查者滿意或非常滿意該項目的頻率;

(2)若從該市的全體市民中隨機抽取3人,試估計恰有2人非常滿意該項目的概率;

(3)已知在評分低于60分的被調(diào)查者中,老年人占,現(xiàn)從評分低于60分的被調(diào)查者中按年齡分層抽取9人以便了解不滿意的原因,并從中選取2人擔任群眾督察員,記為群眾督查員中老年人的人數(shù),求隨機變量的分布列及其數(shù)學期望.

【答案】(1);(2);(3).

【解析】試題分析:(1)根據(jù)直方圖的意義,求出后四個小矩形的面積和即可求得被調(diào)查者滿意或非常滿意該項目的頻率;(2)根據(jù)頻率分布直方圖,被調(diào)查者非常滿意的頻率是

,根據(jù)獨立重復試驗次發(fā)生次的概率公式可得結(jié)果;(3)隨機變量的所有可能取值為0,1,2,利用組合知識根據(jù)古典概型概率公式分別求出各隨機變量的概率,即可得分布列,根據(jù)期望公式可得結(jié)果.

試題解析:(1)根據(jù)題意:60分或以上被認定為滿意或非常滿意,在頻率分布直方圖中,

評分在的頻率為:

;

(2)根據(jù)頻率分布直方圖,被調(diào)查者非常滿意的頻率是

用樣本的頻率代替概率,從該市的全體市民中隨機抽取1人,

該人非常滿意該項目的概率為,

現(xiàn)從中抽取3人恰有2人非常滿意該項目的概率為:

3評分低于60分的被調(diào)查者中,老年人占

又從被調(diào)查者中按年齡分層抽取9人,

∴這9人中,老年人有3人,非老年人6人,

隨機變量的所有可能取值為0,1,2,

的分布列為:

0

1

2

的數(shù)學期望 .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成.每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關,經(jīng)統(tǒng)計得到如下數(shù)據(jù):

1

2

3

4

5

6

7

8

112

61

44.5

35

30.5

28

25

24

根據(jù)以上數(shù)據(jù),繪制了散點圖.

觀察散點圖,兩個變量不具有線性相關關系,現(xiàn)考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對兩個變量的關系進行擬合.已求得用指數(shù)函數(shù)模型擬合的回歸方程為,的相關系數(shù).

參考數(shù)據(jù)(其中):

183.4

0.34

0.115

1.53

360

22385.5

61.4

0.135

(1)用反比例函數(shù)模型求關于的回歸方程;

(2)用相關系數(shù)判斷上述兩個模型哪一個擬合效果更好(精確到0.01),并用其估計產(chǎn)量為10千件時每件產(chǎn)品的非原料成本;

(3)該企業(yè)采取訂單生產(chǎn)模式(根據(jù)訂單數(shù)量進行生產(chǎn),即產(chǎn)品全部售出).根據(jù)市場調(diào)研數(shù)據(jù),若該產(chǎn)品單價定為100元,則簽訂9千件訂單的概率為0.8,簽訂10千件訂單的概率為0.2;若單價定為90元,則簽訂10千件訂單的概率為0.3,簽訂11千件訂單的概率為0.7.已知每件產(chǎn)品的原料成本為10元,根據(jù)(2)的結(jié)果,企業(yè)要想獲得更高利潤,產(chǎn)品單價應選擇100元還是90元,請說明理由.

參考公式:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,相關系數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=x2xalnx

1)當a3時,求fx)在[12]上的最大值與最小值;

2)若fx)在(0,+∞)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四邊形為矩形, ,的中點,沿折起,得到四棱錐,的中點為,在翻折過程中,得到如下有三個命題:

平面,且的長度為定值;

三棱錐的最大體積為

③在翻折過程中,存在某個位置,使得.

其中正確命題的序號為__________.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某貧困村共有農(nóng)戶100戶,均從事水果種植,平均每戶年收入為1.8萬元,在當?shù)卣罅Ψ龀趾鸵龑拢逦瘯䴖Q定2020年初抽出戶(,)從事水果銷售工作,經(jīng)測算,剩下從事水果種植的農(nóng)戶平均每戶年收入比上一年提高了,而從事水果銷售的農(nóng)戶平均每戶年收入為萬元.

1)為了使從事水果種植的農(nóng)戶三年后平均每戶年收入不低于2.4萬元,那么2020年初至少應抽出多少農(nóng)戶從事水果銷售工作?

2)若一年后,該村平均每戶的年收入為(萬元),問的最大值是否可以達到2.1萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個多面體的三視圖正視圖、側(cè)視圖、俯視圖如圖所示,M,N分別是,的中點.

1)求證:平面;

2)求證:平面;

3)若這個多面體的六個頂點A,BC,,,都在同一個球面上,求這個球的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,求的最小值.

(Ⅱ)若在區(qū)間上有兩個極值點,

(i)求實數(shù)的取值范圍;

(ii)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】請解答以下問題,要求解決兩個問題的方法不同.

1)如圖1,要在一個半徑為1米的半圓形鐵板中截取一塊面積最大的矩形,如何截取?并求出這個最大矩形的面積.

2)如圖2,要在一個長半軸為2米,短半軸為1米的半個橢圓鐵板中截取一塊面積最大的矩形,如何截?并求出這個最大矩形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù).

1)若,證明:當時,;

2)若的極小值點,求的取值范圍.

查看答案和解析>>

同步練習冊答案