【題目】甲、乙兩人射擊,甲射擊一次中靶的概率是,乙射擊一次中靶的概率是,且是方程的兩個實根,已知甲射擊5次,中靶次數(shù)的方差是.

1)求,的值;

2)若兩人各射擊2次,至少中靶3次就算完成目標,則完成目標概率是多少?

【答案】1;(2

【解析】

1)可以判斷甲射擊中靶的次數(shù)服從,利用二項分布的方差公式可以求出,再利用一元二次方程根與系數(shù)關(guān)系進行求解即可;

2))設甲乙兩人兩次射擊中分別中靶次數(shù)為事件 兩人且中靶成功的概率為P,根據(jù)獨立事件的概率公式進行求解即可.

1)由題意甲射擊中靶的次數(shù)服從,所以由

.又因為是方程的兩個實根,由根與系數(shù)關(guān)系可知:

,所以

2)設甲、乙兩人兩次射擊中分別中靶次數(shù)為事件(其中表示中靶的次數(shù)), “兩人各射擊2次,至少中靶3次”的概率為P,

因為是相互獨立事件,

所以

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是菱形,底面分別是的中點,,.

I)證明:;

II)求直線與平面所成角的正弦值;

III)在邊上是否存在點,使所成角的余弦值為,若存在,確定點位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求曲線在點處的切線方程;

(Ⅱ)若上恒成立,求實數(shù)的取值范圍;

(Ⅲ)若數(shù)列的前項和, ,求證:數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項均為正整數(shù)的數(shù)列{an}的前n項和為Sn,滿足:Sn﹣1+kan=tan2﹣1,n≥2,n∈N*(其中k,t為常數(shù)).

(1)若k=,t=,數(shù)列{an}是等差數(shù)列,求a1的值;

(2)若數(shù)列{an}是等比數(shù)列,求證:k<t.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,底面是邊長為的正三角形,,且,分別是,中點,則異面直線所成角的余弦值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列的前項和為,且,,數(shù)列滿足,且

I)求數(shù)列,的通項公式;

II)令,求數(shù)列的前項和。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的三邊AB,BC,AC的長依次成等差數(shù)列,且|AB|>|AC|,B(-1,0),C(1,0),則頂點A的軌跡方程為(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,判斷函數(shù)的單調(diào)性;

2)若恒成立,求的取值范圍;

3)已知,證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直線和拋物線相交于不同兩點A,B.

I)求實數(shù)的取值范圍;

)設AB的中點為M,拋物線C的焦點為F.以MF為直徑的圓與直線l相交于另一點N,且滿足,求直線l的方程.

查看答案和解析>>

同步練習冊答案