16.已知正四面體ABCD的棱長為2,若動(dòng)點(diǎn)P從底面△BCD的BC的中點(diǎn)出發(fā),沿著正四面體的側(cè)面運(yùn)動(dòng)到D點(diǎn)停止,則動(dòng)點(diǎn)P經(jīng)過的最短路徑長為( 。
A.3B.$\sqrt{7}$C.2$\sqrt{3}$D.$\sqrt{5}$

分析 由題意畫出圖形,剪展得到平面圖形,利用余弦定理求得答案.

解答 解:如圖,

由題意可知,動(dòng)點(diǎn)P從底面△BCD的BC的中點(diǎn)出發(fā),沿著正四面體的側(cè)面運(yùn)動(dòng)到D點(diǎn)停止,
則動(dòng)點(diǎn)P經(jīng)過的最短路徑為右圖中的PD,
在△PBD中,∵BD=2,BP=1,∠PBD=120°,
∴$PD=\sqrt{{2}^{2}+{1}^{2}-2×1×2×cos120°}$=$\sqrt{5-4×(-\frac{1}{2})}=\sqrt{7}$.
故選:B.

點(diǎn)評(píng) 本題考查多面體表面上的最短距離問題,考查空間想象能力和思維能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖是一個(gè)算法程序框圖,當(dāng)輸入的x的值為4時(shí),輸出的結(jié)果恰好是$\frac{1}{4}$,則空白處的關(guān)系式可以是( 。
A.y=2-xB.y=2xC.y=x${\;}^{-\frac{1}{2}}$D.y=x${\;}^{\frac{1}{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,且(a2+b2-c2)tanC=$\sqrt{2}$ab.
(1)求角C的大;
(2)若c=2,b=2$\sqrt{2}$,求邊a的值及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.雙曲線兩焦點(diǎn)坐標(biāo)分別為F1(0,-5),F(xiàn)2(0,5),2a=8,則雙曲線的標(biāo)準(zhǔn)方程為(  )
A.$\frac{x^2}{64}$-$\frac{y^2}{39}$=1B.$\frac{y^2}{16}$-$\frac{x^2}{9}$=1C.$\frac{x^2}{16}$-$\frac{y^2}{9}$=1D.$\frac{y^2}{16}$-$\frac{x^2}{25}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.由正數(shù)組成的集合A具有如下性質(zhì):若a∈A,b∈A且a<b,那么1+$\frac{a}$∈A.
(1)試問集合A能否恰有兩個(gè)元素且$\frac{4}{3}$∈A?若能,求出所有滿足條件的集合A;若不能,請(qǐng)說明理由.
(2)試問集合A能否恰有三個(gè)元素?若能,請(qǐng)寫出一個(gè)這樣的集合A;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知圓x2+y2=4上有且只有四個(gè)點(diǎn)到直線12x-5y+m=0的距離為1,則實(shí)數(shù)m的取值范圍是(-13,13).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.計(jì)算機(jī)是將信息轉(zhuǎn)換成二進(jìn)制進(jìn)行處理的,二進(jìn)制即“逢二進(jìn)一”,如(1 101)2表示二進(jìn)制數(shù),將它轉(zhuǎn)換成十進(jìn)制數(shù)是1×23+1×22+0×21+1×20=13,那么將二進(jìn)制數(shù)($\underset{\underbrace{11…1}}{14個(gè)}$01)2轉(zhuǎn)換成十進(jìn)制數(shù)是( 。
A.216-1B.216-2C.216-3D.216-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=$\frac{1}{2}$,過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長為8.
(1)求橢圓E的方程;
(2)若直線AB的斜率為$\sqrt{3}$,求△ABF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=4x3-ax+1存在n(n∈N)個(gè)零點(diǎn)對(duì)應(yīng)的實(shí)數(shù)a構(gòu)成的集合記為A(n),則(  )
A.A(0)=(-∞,3]B.A(1)={2}C.A(2)=(3,+∞)D.A(3)=(3,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案