A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 利用誘導(dǎo)公式,判斷各個(gè)選項(xiàng)是否正確,從而得出結(jié)論.
解答 解:根據(jù)誘導(dǎo)公式 ①sin(π+α)=-sinα正確;
②cos($\frac{π}{2}$+α)=-sinα正確;
③tan(π-α)=tan(-α)=-tanα正確,
故選:D.
點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{141}$ | B. | 2$\sqrt{141}$ | C. | 16$\sqrt{6}$ | D. | 4$\sqrt{141}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若c是不等于零的常數(shù),那么數(shù)列{c•an}也一定是等比數(shù)列 | |
B. | 將數(shù)列{an}中的前k項(xiàng)去掉,剩余各項(xiàng)順序不變組成一個(gè)新的數(shù)列,這個(gè)數(shù)列一定是等比數(shù)列 | |
C. | {a2n-1}(n∈N*)是等比數(shù)列 | |
D. | 設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,那么S6、S12-S6、S18-S12也一定成等比數(shù)列 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1+2i | B. | -2+i | C. | 2-i | D. | -2-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x=-$\frac{π}{6}$ | B. | x=$\frac{π}{3}$ | C. | x=-$\frac{5π}{12}$ | D. | x=$\frac{π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$ | B. | $\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$ | C. | $\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$ | D. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $-\frac{3}{2}$ | C. | $±\frac{3}{2}$ | D. | $±\frac{9}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com