已知正方形ABCD,則以A、B為焦點(diǎn),且過C、D兩點(diǎn)的橢圓的離心率為
 
分析:由“以A、B為焦點(diǎn)”可求得c,再由“過C、D兩點(diǎn)”結(jié)合橢圓的定義可知|AC|+|BC|=2a,可求a,再由離心率公式求得其離心率.
解答:解:設(shè)正方形邊長為1,則AB=2c=1,
∴c=
1
2

∵|AC|+|BC|=1+
2
=2a,
∴a=
2
+1
2

∴e=
c
a
=
1
2
2
+1
2
=
2
-1.
故答案為:
2
-1
點(diǎn)評:本題通過正方形來構(gòu)造橢圓,來考查其定義及性質(zhì),題目靈活新穎,轉(zhuǎn)化巧妙,是一道好題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長為2,點(diǎn)P為對角線AC上一點(diǎn),則(
.
AP
+
.
BD
)•(
.
PB
+
.
PD
)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD邊長為1,則|
AB
+
BC
+
AC
|
=( 。
A、0
B、2
C、
2
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長為1,分別取邊BC、CD的中點(diǎn)E、F,連接AE、EF、AF,以AE、EF、FA為折痕,折疊使點(diǎn)B、C、D重合于一點(diǎn)P.
(1)求證:AP⊥EF;
(2)求證:平面APE⊥平面APF;
(3)求異面直線PA和EF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知正方形ABCD.E、F分別是AB、CD的中點(diǎn),將△ADE沿DE折起,如圖所示,記二面角A-DE-C的大小為θ(0<θ<π).
(Ⅰ)證明BF∥平面ADE;
(Ⅱ)若△ACD為正三角形,試判斷點(diǎn)A在平面BCDE內(nèi)的射影G是否在直線EF上,證明你的結(jié)論,并求角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•虹口區(qū)二模)(理)已知正方形ABCD的邊長為1,PD⊥平面ABCD,PD=3,
(1)若E是棱PB上一點(diǎn),過點(diǎn)A、D、E的平面交棱PC于F,求證:BC∥EF;
(2)求二面角A-PB-D的大。

查看答案和解析>>

同步練習(xí)冊答案