【題目】如圖,在三棱錐中,分別是的中點,平面平面,,是邊長為2的正三角形,.

(1)求證:平面;

(2)求二面角的余弦值.

【答案】(1)見解析(2)

【解析】試題分析:(1)利用空間向量,通過計算進行證明:先建立空間直角坐標系,設(shè)各點坐標,表示,以及平面中兩相交直線,,利用向量數(shù)量積計算證明,,最后根據(jù)線面垂直判定定理得結(jié)論(2)利用方程組求出各面法向量,利用向量數(shù)量積求向量夾角余弦值,最后根據(jù)二面角與向量夾角關(guān)系確定二面角余弦值

試題解析:(Ⅰ)證明:如圖,建立空間直角坐標系,則,

,

,,

,,

CA,CK是平面KAC內(nèi)的兩條相交直線,

所以平面KAC.

(Ⅱ)解:平面BDF的一個法向量,

平面BDE(即平面ABK)的一個法向量為

,

所以二面角的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左焦點為F1有一小球A 從F1處以速度v開始沿直線運動,經(jīng)橢圓壁反射(無論經(jīng)過幾次反射速度大小始終保持不變,小球半徑忽略不計),若小球第一次回到F1時,它所用的最長時間是最短時間的5倍,則橢圓的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(n)=1+ ,g(n)= ,n∈N*
(1)當n=1,2,3時,試比較f(n)與g(n)的大小關(guān)系;
(2)猜想f(n)與g(n)的大小關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】向量的運算常常與實數(shù)運算進行類比,下列類比推理中結(jié)論正確的是(
A.“若ac=bc(c≠0),則a=b”類比推出“若 = ),則 =
B.“在實數(shù)中有(a+b)c=ac+bc”類比推出“在向量中( + = +
C.“在實數(shù)中有(ab)c=a(bc)”類比推出“在向量中( = )”
D.“若ab=0,則a=0或b=0”類比推出“若 =0,則 = =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為 與p,且乙投球2次均未命中的概率為
(1)求乙投球的命中率p;
(2)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P(1,m)在拋物線C:y2=2Px(P>0)上,F(xiàn)為焦點,且|PF|=3.
(1)求拋物線C的方程;
(2)過點T(4,0)的直線l交拋物線C于A,B兩點,O為坐標原點.
(。┣ 的值;
(ⅱ)若以A為圓心,|AT|為半徑的圓與y軸交于M,N兩點,求△MNF的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0}. 若A∩B={2},求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若,求函數(shù)的單調(diào)區(qū)間;

(2)若時,都有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某產(chǎn)品的歷史收益率的頻率分布直方圖如圖所示.

(1)試估計該產(chǎn)品收益率的中位數(shù);

(2)若該產(chǎn)品的售價(元)與銷量(萬份)之間有較強線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如表5組的對應(yīng)數(shù)據(jù):

售價(元)

25

30

38

45

52

銷量(萬份)

7.5

7.1

6.0

5.6

4.8

根據(jù)表中數(shù)據(jù)算出關(guān)于的線性回歸方程為,求的值;

(3)若從表中五組銷量數(shù)據(jù)中隨機抽取兩組,記其中銷量超過6萬份的組數(shù)為,求的分布列及期望.

查看答案和解析>>

同步練習冊答案