已知圓C:x2+y2=12,直線l:4x+3y=25,則圓C的圓心到直線l的距離為
 
考點:點到直線的距離公式
專題:直線與圓
分析:先求出圓心坐標,再利用點到直線的距離公式能求出圓心到直線的距離.
解答: 解:圓C:x2+y2=12的圓心C(0,0)到直線l:4x+3y=25的距離:
d=
|-25|
16+9
=5.
故答案為:5.
點評:本題考查圓心到直線的距離公式的求法,是基礎題,解題時要注意點到直線的距離公式的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

求出直線
x=2+t
y=-1-t
(t為參數(shù))與曲線
x=3cosα
y=3sinα
(α為參數(shù))的交點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果數(shù)據(jù)x1,x2,…xn的平均值是2,則數(shù)據(jù)3x1+4,3x2+4,…,3xn+4的平均值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}滿足a1=1,an•an+1=2n,則S2012=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定積分
2
0
4-x2
dx等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(k)=
1
k+1
+
1
k+2
+
1
k+3
+…+
1
2k
(k∈N*),用數(shù)學歸納法證明過程中從f(k) 到f(k+1),需要增加的代數(shù)式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x為實數(shù),則“x≥3”是“x2-2x-3≥0”的
 
條件(填充分不必要、必要不充分、充要條件、既不充分也不必要).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在[-2,2]上的連續(xù)函數(shù)f(x)滿足2013f(-x)=
1
2013f(x)
,且在[0,2]上為增函數(shù),若f(log2m)<f[log4(m+2)]成立,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)
2+i
1-2i
=( 。
A、iB、-i
C、4+3iD、4-3i

查看答案和解析>>

同步練習冊答案