【題目】如圖,四棱錐中,四邊形為正方形,,分別為,中點(diǎn).
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/18/2487522753945600/2488179565404160/STEM/3bba3a8519b8447aaec6f2ca7eb73ba0.png]
(1)證明:平面;
(2)已知,,,求三棱錐的體積.
【答案】(1)證明見解析;(2).
【解析】
(1)取中點(diǎn),連接,,可證明四邊形為平行四邊形,得,即可證明;
(2)根據(jù)等體積法可知,轉(zhuǎn)化為計(jì)算,求底面積及高即可求解.
(1)證明:
取中點(diǎn),連接,,
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/18/2487522753945600/2488179565404160/EXPLANATION/05dd478206c84ea69a884adb216948dd.png]
∵為中點(diǎn),∴∥,,
又為中點(diǎn),∴∥,
∴∥,,∴四邊形為平行四邊形.
∴,
∵平面,平面,
∴平面.
(2)在正方形中,,
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/18/2487522753945600/2488179565404160/EXPLANATION/b91ec9c1c53b468ab8b6a4453b411d6b.png]
又∵,∴,
又,∴平面,
∵,平面,平面,
∴平面,
∴到平面的距離等于到平面的距離,即為.
∵,,
∴,即,
又為中點(diǎn),
∴.
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)營銷和電子商務(wù)的興起,人們的購物方式更具多樣化,某調(diào)查機(jī)構(gòu)隨機(jī)抽取10名購物者進(jìn)行采訪,5名男性購物者中有3名傾向于選擇網(wǎng)購,2名傾向于選擇實(shí)體店,5名女性購物者中有2名傾向于選擇網(wǎng)購,3名傾向于選擇實(shí)體店.
(1)若從10名購物者中隨機(jī)抽取2名,其中男、女各一名,求至少1名傾向于選擇實(shí)體店的概率;
(2)若從這10名購物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中,角,,的對邊分別為,,,,,________.是否存在以,,為邊的三角形?如果存在,求出的面積;若不存在,說明理由.
從①;②;③這三個(gè)條件中任選一個(gè),補(bǔ)充在上面問題中并作答.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中有一題:今有牛、馬、羊食人苗,苗主責(zé)之粟四斗.羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?其意是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償4斗粟,羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比率償還,牛、馬、羊的主人各應(yīng)賠償多少粟?在這個(gè)問題中,牛主人比羊主人多賠償了多少斗( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)與的圖象有兩個(gè)不同的交點(diǎn)
(i)求實(shí)數(shù)a的取值范圍
(ii)求證:且為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個(gè)等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計(jì)入考生總成績時(shí),將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級成績.
某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六個(gè)選考科目進(jìn)行測試,其中物理考試原始成績基本服從正態(tài)分布N(60,169).
(Ⅰ)求物理原始成績在區(qū)間(47,86)的人數(shù);
(Ⅱ)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.
(附:若隨機(jī)變量,則,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知().
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),對任意的,,且,都有,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,討論關(guān)于x的方程在區(qū)間上實(shí)根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】武漢出現(xiàn)的新型冠狀病毒是一種可以通過飛沫傳播的變異病毒,某藥物研究所為篩查該新型冠狀病毒,需要檢驗(yàn)血液是否為陽性,現(xiàn)有份血液樣本,每份樣本取到的可能性均等,有以下兩種檢驗(yàn)方式:①逐份檢驗(yàn),則需要檢驗(yàn)n次;②混合檢驗(yàn),將其中份血液樣本分別取樣混合在一起檢驗(yàn).若檢驗(yàn)結(jié)果為陰性,這k份血液全為陰性,因此這k份血液樣本檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份血液再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為次.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陰性還是陽性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為.
(1)假設(shè)有5份血液樣本,其中只有2份為陽性,若采取逐份檢驗(yàn)方式,求恰好經(jīng)過2次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來的概率;
(2)現(xiàn)取其中份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.
(i)試運(yùn)用概率統(tǒng)計(jì)知識,若,試求P關(guān)于k的函數(shù)關(guān)系式;
(ii)若,采用混合檢驗(yàn)方式可以使得這k份血液樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求k的最大值.
參考數(shù)據(jù):,,,,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com