【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在取得極小值,若,求實(shí)數(shù)的取值范圍.
【答案】(1)答案不唯一,具體見(jiàn)解析(2)
【解析】
(1)對(duì)求導(dǎo),求出的零點(diǎn),對(duì)進(jìn)行分類討論,討論每種情況下的單調(diào)性即可;
(2)討論三種情況下的極小值,時(shí),無(wú)極小值;時(shí),的極小值,所以成立;時(shí),的極小值,構(gòu)造函數(shù),判斷的單調(diào)性求出的范圍即可.
(1)由題意,.
令解得,,
①當(dāng)時(shí),時(shí),,則在為增函數(shù);
時(shí),,則在為減函數(shù);
時(shí),,則在為增函數(shù);
②當(dāng),時(shí),,則在為增函數(shù);
③當(dāng)時(shí),時(shí),,則在為增函數(shù);
時(shí),,則在為減函數(shù);
時(shí),,則在為增函數(shù);
綜上所述:當(dāng)時(shí),在為減函數(shù),在和為增函數(shù);
當(dāng)時(shí),在為增函數(shù);
當(dāng)時(shí),在為減函數(shù),在和為增函數(shù);
(2)由(1)可當(dāng)函數(shù)不存在極值點(diǎn),
當(dāng)時(shí),可知函數(shù),
所以成立;
當(dāng)時(shí),可知函數(shù),
令,
則,,
當(dāng)時(shí),,即在為減函數(shù),
所以,所以在上為減函數(shù),
又因?yàn)?/span>,所以,
由在上為減函數(shù),得.
綜上所述,當(dāng),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個(gè)極值點(diǎn),,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中:①若“”是“”的充要條件;
②若“,”,則實(shí)數(shù)的取值范圍是;
③已知平面、、,直線、,若,,,,則;
④函數(shù)的所有零點(diǎn)存在區(qū)間是.
其中正確的個(gè)數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一項(xiàng)針對(duì)某一線城市30~50歲都市中年人的消費(fèi)水平進(jìn)行調(diào)查,現(xiàn)抽查500名(200名女性,300名男性)此城市中年人,最近一年內(nèi)購(gòu)買六類高價(jià)商品(電子產(chǎn)品、服裝、手表、運(yùn)動(dòng)與戶外用品、珠寶首飾、箱包)的金額(萬(wàn)元)的頻數(shù)分布表如下:
(1)將頻率視為概率,估計(jì)該城市中年人購(gòu)買六類高價(jià)商品的金額不低于5000元的概率.
(2)把購(gòu)買六類高價(jià)商品的金額不低于5000元的中年人稱為“高收入人群”,根據(jù)已知條件完成22列聯(lián)表,并據(jù)此判斷能否有95%的把握認(rèn)為“高收入人群”與性別有關(guān)?
參考公式:,其中
參考附表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系 中,曲線 的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線 的極坐標(biāo)方程為 .
(1)求直線和曲線的普通方程;
(2)已知點(diǎn),且直線和曲線交于兩點(diǎn),求 的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,焦點(diǎn)為的拋物線的準(zhǔn)線被橢圓截得的弦長(zhǎng)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)、到直線的距離之積為,求證:直線與橢圓相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)定義:設(shè)是非零實(shí)常數(shù),若對(duì)于任意的,都有,則稱函數(shù)為“關(guān)于的偶型函數(shù)”
(1)請(qǐng)以三角函數(shù)為例,寫出一個(gè)“關(guān)于2的偶型函數(shù)”的解析式,并給予證明
(2)設(shè)定義域?yàn)榈摹瓣P(guān)于的偶型函數(shù)”在區(qū)間上單調(diào)遞增,求證在區(qū)間上單調(diào)遞減
(3)設(shè)定義域?yàn)?/span>的“關(guān)于的偶型函數(shù)”是奇函數(shù),若,請(qǐng)猜測(cè)的值,并用數(shù)學(xué)歸納法證明你的結(jié)論
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面平面ABCD,底面ABCD是直角梯形,,,,O是AD的中點(diǎn).
(1)在線段PA上找一點(diǎn)E,使得平面PCD,并證明;
(2)在(1)的條件下,若,求平面OBE與平面POC所成的銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com