對于正項數(shù)列{an},定義Hn=為{an}的“光陰”值,現(xiàn)知某數(shù)列的“光陰”值為Hn=,則數(shù)列{an}的通項公式為________.
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復(fù)習體系通關(guān) Word版訓(xùn)練3-x3練習卷(解析版) 題型:選擇題
直線x+(a2+1)y+1=0的傾斜角的取值范圍是( ).
A. B. C. ∪ D. ∪
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復(fù)習專題能力測評6練習卷(解析版) 題型:選擇題
已知點M(,0),橢圓+y2=1與直線y=k(x+)交于點A、B,則△ABM的周長為( ).
A.4 B.8 C.12 D.16
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復(fù)習專題能力測評5練習卷(解析版) 題型:選擇題
如圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分別是CC1、AD的中點.那么異面直線OE和FD1所成的角的余弦值等于 ( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復(fù)習專題能力測評4練習卷(解析版) 題型:解答題
已知單調(diào)遞增的等比數(shù)列{an}滿足:
a2+a3+a4=28,且a3+2是a2和a4的等差中項.
(1)求數(shù)列{an}的通項公式an;
(2)令bn=anlogan,Sn=b1+b2+…+bn,求使Sn+n·2n+1>50成立的最小的正整數(shù)n.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復(fù)習專題能力測評4練習卷(解析版) 題型:選擇題
已知等比數(shù)列{an}的公比為q,記bn=am(n-1)+1+am(n-1)+2+…+am(n-1)+m,cn=am(n-1)+1·am(n-1)+2·…·am(n-1)+m(m,n∈N*),則以下結(jié)論一定正確的是( ).
A.數(shù)列{bn}為等差數(shù)列,公差為qm
B.數(shù)列{bn}為等比數(shù)列,公比為q2m
C.數(shù)列{cn}為等比數(shù)列,公比為qm2
D.數(shù)列{cn}為等比數(shù)列,公比為qmn
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復(fù)習專題能力測評4練習卷(解析版) 題型:選擇題
公比為2的等比數(shù)列{an}的各項都是正數(shù),且a3a11=16,則a5=( )
A.1 B.2 C.4 D.8
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復(fù)習專題能力測評3練習卷(解析版) 題型:選擇題
若=,則tan2α=( ).
A.- B. C.- D.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復(fù)習專題提升訓(xùn)練訓(xùn)練9練習卷(解析版) 題型:填空題
設(shè)Sn為數(shù)列{an}的前n項和,Sn=(-1)nan-,n∈N*,則:
(1)a3=________;
(2)S1+S2+…+S100=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com