設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,以F2為圓心,OF2(O為橢圓中心)為半徑作圓F2,若它與橢圓的一個交點(diǎn)為M,且MF1恰好為圓F2的一條切線,則橢圓的離心率為( 。
A、
3
-1
B、2-
3
C、
2
2
D、
3
2
考點(diǎn):橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:利用圓的切線的性質(zhì)可得F1M⊥F2M.再利用直角三角形的邊角關(guān)系可得:|F1M|=
3
c.利用橢圓的定義可得:c+
3
c=2a,即可解出.
解答: 解:∵以F2為圓心,OF2(O為橢圓中心)為半徑作圓F2,若它與橢圓的一個交點(diǎn)為M,且MF1恰好為圓F2的一條切線,
∴F1M⊥F2M.
|F2M|=
1
2
|F1F2|=c
,
∴|F1M|=
3
c.
∴c+
3
c=2a,
c
a
=
3
-1

∴橢圓的離心率為
3
-1.
故選:A.
點(diǎn)評:本題考查了圓的切線的性質(zhì)、直角三角形的邊角關(guān)系、橢圓的定義及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{bn}滿足b1=
1
2
,b2=
1
4
.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,a1=1,且nan+1=2Sn(n∈N*).
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)令Tn=a1b1+a2b2+…+anbn,若對任意的n∈N*,不等式λnTn+2bnSn<2(λn+3bn)恒成立,試求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某輪船航行過程中每小時的燃料費(fèi)u與其速度v的立方成正比.已知當(dāng)速度為10千米/小時,燃料費(fèi)10元/小時,其他與速度無關(guān)的費(fèi)用每小時160元.設(shè)每千米航程成本為y.
(1)試用速度v表示輪船每千米航程成本y;
(2)輪船的速度為多少時,每千米航程成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),對任意的x∈R,滿足f(-x)+f(x)=0,f(2-x)=f(x),且當(dāng)x∈[0,1]時,f(x)=ax,若方程f(x)-lgx=0恰有五個實(shí)根,則實(shí)數(shù)a的取值范圍是( 。
A、(-lg11,-lg7)∪(2lg3,lg13)
B、(-2lg3,-lg7)∪(lg11,lg13)
C、(-lg13,-lg11)∪(lg7,2lg3)
D、(-lg13,-2lg3)∪(lg7,lg11)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

福建省第14屆運(yùn)動會在媽祖故里莆田舉行,在開幕式表演“籃球操”的訓(xùn)練中我校A、B、C三個同學(xué)一組進(jìn)行傳球訓(xùn)練,每個同學(xué)傳給另外兩個中的某一個的可能性都相同
(Ⅰ)列出從A開始3次傳球的所有路徑(用A、B、C表示);
(Ⅱ)求從起A開始3次傳球后,籃球停在A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45元/m,新墻的造價為180元/m,設(shè)利用的舊墻的長度為x(單位:元).確定x=
 
,使修建此矩形場地圍墻的總費(fèi)用最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科做)  設(shè)函數(shù)f(x)=ax+
x
x-1
(x>1)
(1)若a>0,求函數(shù)f(x)的最小值;
(2)若a是從1,2,3三個數(shù)中任取一個數(shù),b是從2,3,4,5四個數(shù)中任取一個數(shù),求f (x)>b恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,最小正周期為2π的是( 。
A、y=cosx
B、y=sin(2x+π)
C、y=tanx
D、y=|sinx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在(-∞,+∞)上的偶函數(shù),當(dāng)x∈(-∞,0)時,f(x)=
1
x
-x4,則當(dāng)x∈(0,+∞)時,f(x)=
 

查看答案和解析>>

同步練習(xí)冊答案