(2009•上海模擬)如圖,A是棱長(zhǎng)為a的正方體的一個(gè)頂點(diǎn),過(guò)從此頂點(diǎn)出發(fā)的三條棱的中點(diǎn)作截面,對(duì)正方體的所有頂點(diǎn)都如此操作,所得的各截面與正方體各面共同圍成一個(gè)多面體,則關(guān)于此多面體有以下結(jié)論:①有12個(gè)頂點(diǎn);②有24條棱;③有12個(gè)面;④表面積為3a2;⑤體積為
56
a3.其中正確的結(jié)論是
①②⑤
①②⑤
.(要求填上所有正確結(jié)論的序號(hào))
分析:先根據(jù)題意畫出圖形,如圖,原來(lái)的六個(gè)面還在只不過(guò)是變成了一個(gè)小正方形,再添了八個(gè)頂點(diǎn)各對(duì)應(yīng)的一個(gè)三角形的面,計(jì)算或數(shù)一數(shù)它的面數(shù)等,再結(jié)合割補(bǔ)法求出它的表面積及體積即可.
解答:解:如圖,
原來(lái)的六個(gè)面還在只不過(guò)是變成了一個(gè)小正方形,再添了八個(gè)頂點(diǎn)各對(duì)應(yīng)的一個(gè)三角形的面,所以總計(jì)6+8=14個(gè)面,故③錯(cuò);
每個(gè)正方形4條邊,每個(gè)三角形3條邊,4×6+3×8=48,考慮到每條邊對(duì)應(yīng)兩個(gè)面,所以實(shí)際只有
1
2
×48=24條棱.②正確;
所有的頂點(diǎn)都出現(xiàn)在原來(lái)正方體的棱的中點(diǎn)位置,
原來(lái)的棱的數(shù)目是12,所以現(xiàn)在的頂點(diǎn)的數(shù)目是12.
或者從圖片上可以看出每個(gè)頂點(diǎn)對(duì)應(yīng)4條棱,每條棱很明顯對(duì)應(yīng)兩個(gè)頂點(diǎn),所以頂點(diǎn)數(shù)是棱數(shù)的一半即12個(gè).①正確;
三角形和四邊形的邊長(zhǎng)都是
2
2
a,所以正方形總面積為6×
1
2
a2=3a2,三角形總面積為8×
1
2
×
1
2
a2sin60°=
3
a2,
表面積(3+
3
)a2,故④錯(cuò);
體積為原正方形體積減去8個(gè)三棱錐體積,每個(gè)三棱錐體積為8×
1
6
a
2
3=
1
6
a2,剩余總體積為a3-
1
6
a3=
5
6
a3.⑤正確.
故答案為:①②⑤.
點(diǎn)評(píng):本小題主要考查棱柱的結(jié)構(gòu)特征、多面體的表面積與體積等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查空間想象能力、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•上海模擬)在解決問(wèn)題:“證明數(shù)集A={x|2<x≤3}沒(méi)有最小數(shù)”時(shí),可用反證法證明.假設(shè)a(2<a≤3)是A中的最小數(shù),則取a′=
a+2
2
,可得:2=
2+2
2
<a′=
a+2
2
a+a
2
=a≤3
,與假設(shè)中“a是A中的最小數(shù)”矛盾!那么對(duì)于問(wèn)題:“證明數(shù)集B={x|x=
n
m
,m,n∈N*,并且n<m}
沒(méi)有最大數(shù)”,也可以用反證法證明.我們可以假設(shè)x=
n0
m0
是B中的最大數(shù),則可以找到x'=
n0+1
m0+1
n0+1
m0+1
(用m0,n0表示),由此可知x'∈B,x'>x,這與假設(shè)矛盾!所以數(shù)集B沒(méi)有最大數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•上海模擬)定義區(qū)間(m,n),[m,n],(m,n],[m,n)的長(zhǎng)度均為n-m,其中n>m.
(1)若關(guān)于x的不等式2ax2-12x-3>0的解集構(gòu)成的區(qū)間的長(zhǎng)度為
6
,求實(shí)數(shù)a的值;
(2)已知關(guān)于x的不等式sinxcosx+
3
cos2x+b>0
,x∈[0,π]的解集構(gòu)成的各區(qū)間的長(zhǎng)度和超過(guò)
π
3
,求實(shí)數(shù)b的取值范圍;
(3)已知關(guān)于x的不等式組
7
x+1
>1 
log2x+log2(tx+3t)<2
的解集構(gòu)成的各區(qū)間長(zhǎng)度和為6,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•上海模擬)已知全集U=R,集合A={x|x2-2x-3≤0,x∈R},B={x||x-2|<2,x∈R},那么集合A∩B=
{x|0<x≤3}
{x|0<x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•上海模擬)已知集合A={z|z=1+i+i2+…+in,n∈N*},B={ω|ω=z1•z2,z1、z2∈A},(z1可以等于z2),從集合B中任取一元素,則該元素的模為
2
的概率為
2
7
2
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•上海模擬)已知點(diǎn)列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線y=
x4
上的點(diǎn),點(diǎn)列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點(diǎn),其中x1=a(0<a<1),對(duì)任意的n∈N*,點(diǎn)An、Bn、An+1構(gòu)成以Bn為頂點(diǎn)的等腰三角形.
(1)證明:數(shù)列{yn}是等差數(shù)列;
(2)求證:對(duì)任意的n∈N*,xn+2-xn是常數(shù),并求數(shù)列{xn}的通項(xiàng)公式;
(3)對(duì)上述等腰三角形AnBnAn+1添加適當(dāng)條件,提出一個(gè)問(wèn)題,并做出解答.(根據(jù)所提問(wèn)題及解答的完整程度,分檔次給分)

查看答案和解析>>

同步練習(xí)冊(cè)答案