4.已知函數(shù)$f(x)=\left\{\begin{array}{l}{(3-a)^x},x≤2\\{log_a}(x-1)+3,x>2\end{array}\right.$是定義域上的單調(diào)增函數(shù),則a的取值范圍是(  )
A.[3-$\sqrt{3}$,2)B.$(\sqrt{5}-1,\sqrt{3})$C.$(1,\sqrt{3})$D.$(1,3-\sqrt{3})$

分析 利用分段函數(shù)以及指數(shù)函數(shù)與對數(shù)函數(shù)的性質,列出不等式組求解即可.

解答 解:函數(shù)$f(x)=\left\{\begin{array}{l}{(3-a)^x},x≤2\\{log_a}(x-1)+3,x>2\end{array}\right.$是定義域上的單調(diào)增函數(shù),
可得$\left\{\begin{array}{l}{3-a>1}\\{a>1}\\{(3-a)^{2}≤lo{g}_{a}1+3}\end{array}\right.$,
解得:a∈[3-$\sqrt{3}$,2).
故選:A.

點評 本題考查分段函數(shù)的單調(diào)性的應用,指數(shù)函數(shù)以及對數(shù)函數(shù)的簡單性質的應用,考查轉化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)$y=\left\{\begin{array}{l}x+4,x≤0\\{x^2}-2x,0<x≤4\\-x+2,x>4\end{array}\right.$.
(1)求f(f(5))的值;
(2)畫出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合A={x∈N|x≤3},B={x|x2+6x-16<0},則A∩B=( 。
A.{x|-8<x<2}B.{1}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知A,B分別為橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右頂點,不同兩點P,Q在橢圓C上,且關于x軸對稱,設直線AP,BQ的斜率分別為m,n,則當$\frac{a}-\frac{1}{3mn}$取最大值時,橢圓C的離心率為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)f(x)=x2+lgx-3的一個零點所在區(qū)間為( 。
A.$(0,\frac{1}{2})$B.$(\frac{1}{2},1)$C.$(1,\frac{3}{2})$D.$(\frac{3}{2},2)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)$f(x)=\sqrt{6-2x}+lg(x+2)$的定義域為集合A,B={x|x>3或x<2}.
(1)求A∩B;
(2)若C={x|x<2a+1},B∩C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若log545=a,則log53等于( 。
A.$\frac{2}{a-1}$B.$\frac{2}{1+a}$C.$\frac{a+1}{2}$D.$\frac{a-1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=-x2+ax+b,且f(4)=-3.
(1)若函數(shù)f(x)在區(qū)間[2,+∞)上遞減,求實數(shù)b的取值范圍;
(2)若函數(shù)f(x)的圖象關于直線x=1對稱,且關于x的方程f(x)=log2m在區(qū)間[-3,3]上有解,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在($\frac{y}{\sqrt{x}}-\frac{x}{\sqrt{y}}$)16的二項展開式的17個項中,整式的個數(shù)是3.

查看答案和解析>>

同步練習冊答案