以下四個命題中,真命題的個數(shù)是( 。
①“若a+b≥2則a,b中至少有一個不小于1”的逆命題;
②存在正實數(shù)a,b,使得lg(a+b)=lga+lgb;
③“所有奇數(shù)都是素數(shù)”的否定是“至少有一個奇數(shù)不是素數(shù)”;
④在△ABC中,A<B是sinA<sinB的充分不必要條件.
A、0B、1C、2D、3
考點:命題的真假判斷與應(yīng)用
專題:簡易邏輯
分析:①,寫出命題“若a+b≥2則a,b中至少有一個不小于1”的逆命題,可舉例判斷①;
②,存在正實數(shù)a=2,b=2,使得lg(2+2)=lg2+lg2;
③,寫出“所有奇數(shù)都是素數(shù)”的否定,再舉例說明,可判斷③;
④,在△ABC中,利用大角對大邊及正弦定理可判斷④.
解答: 解:對于①,“若a+b≥2,則a,b中至少有一個不小于1”的逆命題為“若a,b中至少有一個不小于1,則a+b≥2”,錯誤,如a=3≥1,b=-2,但a+b=1<2;
對于②,存在正實數(shù)a=2,b=2,使得lg(2+2)=lg22=2lg2=lg2+lg2成立,故②正確;
對于③,“所有奇數(shù)都是素數(shù)”的否定是“至少有一個奇數(shù)不是素數(shù)”,如:9是奇數(shù),但不是素數(shù),故③正確;
對于④,在△ABC中,A<B?a<b?2RsinA<2RsinB?sinA<sinB,故△ABC中,A<B是sinA<sinB的充分必要條件,故④錯誤.
綜上所述,②③正確,
故選:C.
點評:本題考查命題的真假判斷與應(yīng)用,綜合考查四種命題之間的關(guān)系、全稱命題與特稱命題之間的關(guān)系、充分必要條件的概念及其應(yīng)用,考查分析、推理能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足:①a1=1;②所有項an∈N*;③1=a1<a2<…<an<an+1<…設(shè)集合Am={n|an≤m,m∈N*},將集合Am中的元素的最大值記為bm.換句話說,bm是數(shù)列{an}中滿足不等式an≤m的所有項的項數(shù)的最大值.我們稱數(shù)列{bn}為數(shù)列{an}的伴隨數(shù)列.例如,數(shù)列1,3,5的伴隨數(shù)列為1,1,2,2,3.
(1)請寫出數(shù)列1,4,7的伴隨數(shù)列;
(2)設(shè)an=3n-1,求數(shù)列{an}的伴隨數(shù)列{bn}的前20之和;
(3)若數(shù)列{an}的前n項和Sn=n2+c(其中c常數(shù)),求數(shù)列{an}的伴隨數(shù)列{bm}的前m項和Tm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直角坐標(biāo)系xoy內(nèi),有曲線ξ:xy=η,(η,x>0),過ξ與其對稱軸所在直線的交點作ξ的切線l,記l與x軸交點為P.若以O(shè)為圓心,以|
OP
|為半徑做圓O交ξ與A,B兩點,則△OAB是面積為
 
 
(形狀)三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x-1
+(x-2)0的定義域為( 。
A、{x|x≠2}
B、[1,2)∪(2,+∞)
C、{x|x>1}
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

規(guī)定一種運算“*“:對于任意實數(shù)x,y恒有x*x=0,x*(y*z)=(x*y)+z(“+”表示加號),則2013*2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2ax-b2+16.
(1)若a,b是一枚骰子投擲兩次所得到的點數(shù),求函數(shù)f(x)無零點的概率;
(2)如圖,在邊長為4的正方形內(nèi)均勻地取n個點Pi(xi,yi),若a=xi,b=yi(i∈{1,2,…,n}),統(tǒng)計出使函數(shù)f(x)有兩個不相等零點的點Pi的個數(shù)為m,當(dāng)n充分大時,求圓周率π的近似值(用m,n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程|x2-1|+1=2x解的個數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,∠A=90°,過點A作BC邊上的高AD,則
1
AD2
=
1
AB2
+
1
AC2
,請利用上述結(jié)論,類比推出,在空間四面體O-ABCD中,若OA,OB,OC兩兩垂直,O到平面ABC的距離為OD,則
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=2an,數(shù)列{bn}滿足b1=3,b2=6,且{bn-an}為等差數(shù)列,
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求{bn}的前n項和和Tn

查看答案和解析>>

同步練習(xí)冊答案