已知函數(shù)滿(mǎn)足,對(duì)于任意的實(shí)數(shù)都滿(mǎn),若,則函數(shù)的解析式為( )
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2+2x+n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆上海市高三第一學(xué)期期中理科數(shù)學(xué)試卷 題型:解答題
若定義在上的函數(shù)滿(mǎn)足條件:存在實(shí)數(shù)且,使得:
⑴ 任取,有(是常數(shù));
⑵ 對(duì)于內(nèi)任意,當(dāng),總有。
我們將滿(mǎn)足上述兩條件的函數(shù)稱(chēng)為“平頂型”函數(shù),稱(chēng)為“平頂高度”,稱(chēng)為“平頂寬度”。根據(jù)上述定義,解決下列問(wèn)題:
(1)函數(shù)是否為“平頂型”函數(shù)?若是,求出“平頂高度”和“平頂寬度”;若不是,簡(jiǎn)要說(shuō)明理由。
(2) 已知是“平頂型”函數(shù),求出 的值。
(3)對(duì)于(2)中的函數(shù),若在上有兩個(gè)不相等的根,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題(上海秋季)解析版(理) 題型:解答題
[番茄花園1] 本題共有3個(gè)小題,第1小題滿(mǎn)分3分,第2小題滿(mǎn)分5分,第3小題滿(mǎn)分10分。
若實(shí)數(shù)、、滿(mǎn)足,則稱(chēng)比遠(yuǎn)離.
(1)若比1遠(yuǎn)離0,求的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)、,證明:比遠(yuǎn)離;
(3)已知函數(shù)的定義域.任取,等于和中遠(yuǎn)離0的那個(gè)值.寫(xiě)出函數(shù)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).
23本題共有3個(gè)小題,第1小題滿(mǎn)分3分,第2小題滿(mǎn)分6分,第3小題滿(mǎn)分9分.
已知橢圓的方程為,點(diǎn)P的坐標(biāo)為(-a,b).
(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿(mǎn)足,求點(diǎn)的坐標(biāo);
(2)設(shè)直線(xiàn)交橢圓于、兩點(diǎn),交直線(xiàn)于點(diǎn).若,證明:為的中點(diǎn);
(3)對(duì)于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個(gè)交點(diǎn)、滿(mǎn)足,寫(xiě)出求作點(diǎn)、的步驟,并求出使、存在的θ的取值范圍.
[番茄花園1]22.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年黑龍江省大慶市鐵人中學(xué)高三(上)第二次段考數(shù)學(xué)試卷(解析版) 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com