【題目】已知二次函數(shù)滿足,且方程有兩個(gè)相等的實(shí)數(shù)根
(1)求函數(shù)的解析式;
(2)若是上的奇函數(shù),且時(shí),,求的解析式;
(3)若不等式對(duì)一切實(shí)數(shù),恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)f(x)=x2+x+1.(2)
(3).
【解析】
(1)利用及方程有兩個(gè)相等的實(shí)數(shù)根,列得關(guān)于,的方程,解出即可;
(2)由是上的奇函數(shù),得到,再利用奇偶性求得時(shí)的,寫成分段函數(shù)形式即可.
(3)先利用二次函數(shù)性質(zhì)求得函數(shù)f(x)的最大值,再利用判別式解得c得范圍.
(1)∵二次函數(shù)滿足,
∴4a+2b=0.
又方程有兩個(gè)相等的實(shí)數(shù)根,
即ax2+(b﹣1)x=0,∴△=(b﹣1)2=0.
∴,
∴f(x)=x2+x+1.
(2)∵是上的奇函數(shù),∴當(dāng)時(shí),,
又時(shí),,
令,則,∴,∵是上的奇函數(shù),,
綜上,
(3)若不等式對(duì)一切實(shí)數(shù),恒成立,則
又f(x)=x2+x+1=,
∴ ,即對(duì)一切實(shí)數(shù)恒成立,
∴,即,解得,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小李大學(xué)畢業(yè)后選擇自主創(chuàng)業(yè),開(kāi)發(fā)了一種新型電子產(chǎn)品.2019年9月1日投入市場(chǎng)銷售,在9月份的30天內(nèi),前20天每件售價(jià)(元)與時(shí)間(天,)滿足一次函數(shù)關(guān)系,其中第一天每件售價(jià)為63元,第10天每件售價(jià)為90元;后10天每件售價(jià)均為120元.已知日銷售量(件)與時(shí)間(天)之間的函數(shù)關(guān)系是.
(1)寫出該電子產(chǎn)品9月份每件售價(jià)(元)與時(shí)間(天)的函數(shù)關(guān)系式;
(2)9月份哪一天的日銷售金額最大?并求出最大日銷售金額.(日銷售金額=每件售價(jià)日銷售量).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果存在函數(shù)(為常數(shù)),使得對(duì)函數(shù)定義域內(nèi)任意都有成立,那么稱為函數(shù)的一個(gè)“線性覆蓋函數(shù)”.給出如下四個(gè)結(jié)論:
①函數(shù)存在“線性覆蓋函數(shù)”;
②對(duì)于給定的函數(shù),其“線性覆蓋函數(shù)”可能不存在,也可能有無(wú)數(shù)個(gè);
③為函數(shù)的一個(gè)“線性覆蓋函數(shù)”;
④若為函數(shù)的一個(gè)“線性覆蓋函數(shù)”,則
其中所有正確結(jié)論的序號(hào)是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), .
(1)解方程.
(2)令,求的值.
(3)若是定義在上的奇函數(shù),且對(duì)任意恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在圓外,過(guò)點(diǎn)作圓的切線,設(shè)切點(diǎn)為.
(1)若點(diǎn)運(yùn)動(dòng)到處,求此時(shí)切線的方程;
(2)求滿足的點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面是菱形,是的中點(diǎn),點(diǎn)在側(cè)棱上.
(1)求證:平面;
(2)若是的中點(diǎn),求證:平面;
(3)若,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓上任意一點(diǎn)到兩焦點(diǎn)距離之和為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線的斜率為,直線與橢圓C交于兩點(diǎn).點(diǎn)為橢圓上一點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地有一企業(yè)2007年建廠并開(kāi)始投資生產(chǎn),年份代號(hào)為7,2008年年份代號(hào)為8,依次類推.經(jīng)連續(xù)統(tǒng)計(jì)9年的收入情況如下表(經(jīng)數(shù)據(jù)分析可用線性回歸模型擬合與的關(guān)系):
年份代號(hào)() | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
當(dāng)年收入(千萬(wàn)元) | 13 | 14 | 18 | 20 | 21 | 22 | 24 | 28 | 29 |
(Ⅰ)求關(guān)于的線性回歸方程;
(Ⅱ)試預(yù)測(cè)2020年該企業(yè)的收入.
(參考公式: , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù);
(1)討論的極值點(diǎn)的個(gè)數(shù);
(2)若,且恒成立,求的最大值.
參考數(shù)據(jù):
1.6 | 1.7 | 1.8 | |
4.953 | 5.474 | 6.050 | |
0.470 | 0.531 | 0.588 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com