分析 (Ⅰ)由已知列關(guān)于a,b,c的方程組,求解方程組得a,b,c的值,則橢圓E的方程可求;
(Ⅱ)設(shè)出BC所在直線(xiàn)方程x=ty+1,與橢圓方程聯(lián)立,把AB,AC的方程用含有A,B的坐標(biāo)表示,再由$\overrightarrow{QM}•\overrightarrow{QN}=0$求解.
解答 解:(Ⅰ)由已知可得$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{2}}\\{a+c=3}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a=2,c=1,b=$\sqrt{3}$.
∴橢圓E的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(Ⅱ)依題意,直線(xiàn)BC的斜率不為0,設(shè)其方程為x=ty+1.
將其代入$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,整理得(4+3t2)y2+6ty-9=0.
設(shè)B(x1,y1),C(x2,y2),
∴y1+y2=-$\frac{6t}{4+3{t}^{2}}$,y1y2=-$\frac{9}{4+3{t}^{2}}$.
直線(xiàn)AB的方程是y=$\frac{{y}_{1}}{{x}_{1}+2}$(x+2),從而可得M(4,$\frac{6{y}_{1}}{{x}_{1}+2}$),
同理可得N(4,$\frac{6{y}_{2}}{{x}_{2}+2}$).
假設(shè)x軸上存在定點(diǎn)Q(q,0)使得$\overrightarrow{QM}•\overrightarrow{QN}=0$.
∴$(q-4)^{2}+\frac{36{y}_{1}{y}_{2}}{({x}_{1}+2)({x}_{2}+2)}$=0.
將x1=ty1+1,x2=ty2+1代入上式,整理得(q-4)2-9=0,
解得q=1,或q=7.
∴x軸上存在定點(diǎn)Q(1,0)或Q(7,0),使得$\overrightarrow{QM}•\overrightarrow{QN}=0$成立.
點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查直線(xiàn)和圓錐曲線(xiàn)位置關(guān)系的應(yīng)用,訓(xùn)練了平面向量數(shù)量積在求解圓錐曲線(xiàn)問(wèn)題中的應(yīng)用,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow{a}$=$\overrightarrow{0}$,$\overrightarrow$=$\overrightarrow{0}$ | B. | λ=μ=0 | C. | λ=0,$\overrightarrow$=$\overrightarrow{0}$ | D. | $\overrightarrow{a}$=$\overrightarrow{0}$,μ=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}$ | C. | $2\sqrt{2}$ | D. | $\frac{{3\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p∧q | B. | p∨(¬q) | C. | p∧(¬q) | D. | (¬p)∧q |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com