【題目】△ABC是等邊三角形,邊長(zhǎng)為4,BC邊的中點(diǎn)為D,橢圓W以A,D為左、右兩焦點(diǎn),且經(jīng)過B、C兩點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)D且x軸不垂直的直線l交橢圓于M,N兩點(diǎn),求證:直線BM與CN的交點(diǎn)在一條定直線上.

【答案】
(1)解:由題意可知兩焦點(diǎn)為 ,可得c= ,2a=6,可得a=3,則b= ,

因此橢圓的方程為


(2)證明:①當(dāng)MN不與x軸重合時(shí),

設(shè)MN的方程為 ,且 ,

設(shè)M(x1,y1),N(x2,y2

聯(lián)立橢圓與直線方程,可得 ,

消去x可得

,

則BM: ①CN:

②﹣①得

,

,

,即

②當(dāng)MN與x軸重合時(shí),即MN的方程x=0為,即M(3,0),N(﹣3,0).

即BM: ①,

CN:

聯(lián)立①和②消去y可得

綜上BM與CN的交點(diǎn)在直線 上.


【解析】(1)根據(jù)題意,結(jié)合橢圓的定義得出a,b,c的值,從而得到橢圓的方程,(2)對(duì)直線MN的斜率是否為零進(jìn)行分別討論,①當(dāng)斜率不為零時(shí),設(shè)出直線MN的方程為x = m y + ,且 B ( , 2 ) , C ( , 2 ) ,設(shè)M(x1,y1),N(x2,y2),聯(lián)立直線方程和橢圓方程,用韋達(dá)定理表示出y1+y2, y 1 y 2,根據(jù)點(diǎn)的坐標(biāo)表示出直線BM,直線CN的方程,聯(lián)立解出x=3,②當(dāng)斜率為零時(shí),MN的直線方程為x=0,代入計(jì)算也可得x=3,綜上結(jié)論得證.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解橢圓的標(biāo)準(zhǔn)方程(橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,0<φ<π),其導(dǎo)函數(shù)f′(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( )

A.f(x)=4sin( x+ π)
B.f(x)=4sin( x+
C.f(x)=4sin( x+
D.f(x)=4sin( x+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將一張邊長(zhǎng)為12cm的正方形紙片按如圖(1)所示陰影部分裁去四個(gè)全等的等腰三角形,將余下部分沿虛線折疊并拼成一個(gè)有底的正四棱錐模型,如圖(2)所示放置.如果正四棱錐的主視圖是等邊三角形,如圖(3)所示,則正四棱錐的體積是(
A. cm3
B. cm3
C. cm3
D. cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
(1)若 ,求函數(shù) 的極值;
(2)設(shè)函數(shù) ,求函數(shù) 的單調(diào)區(qū)間;
(3)若在區(qū)間 上不存在 ,使得 成立,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為2的正六邊形ABCDEF中,動(dòng)圓Q的半徑為1,圓心在線段CD(含端點(diǎn))上運(yùn)動(dòng),P是圓Q上及內(nèi)部的動(dòng)點(diǎn),設(shè)向量 (m,n為實(shí)數(shù)),則m+n的取值范圍是(  )

A.(1,2]
B.[5,6]
C.[2,5]
D.[3,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù)x,y滿足不等式組 ,若目標(biāo)函數(shù)z=kx+y僅在點(diǎn)(1,1)處取得最小值,則實(shí)數(shù)k的取值范圍是 ( 。
A.(﹣1,+∞)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(﹣∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖中的三個(gè)直角三角形是一個(gè)體積為20cm3的幾何體的三視圖,則該幾何體外接球的面積(單位:cm2)等于(  )

A.55π
B.75π
C.77π
D.65π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log2(3+x)﹣log2(3﹣x),
(1)求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;
(2)已知f(sinα)=1,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年射陽縣洋馬鎮(zhèn)政府決定投資8千萬元啟動(dòng)“鶴鄉(xiāng)菊!庇^光旅游及菊花產(chǎn)業(yè)項(xiàng)目.規(guī)劃從2017年起,在相當(dāng)長(zhǎng)的年份里,每年繼續(xù)投資2千萬元用于此項(xiàng)目.2016年該項(xiàng)目的凈收入為5百萬元(含旅游凈收入與菊花產(chǎn)業(yè)凈收入),并預(yù)測(cè)在相當(dāng)長(zhǎng)的年份里,每年的凈收入均為上一年的1.5倍.記2016年為第1年,f(n)為第1年至此后第n(n∈N*)年的累計(jì)利潤(rùn)(注:含第n年,累計(jì)利潤(rùn)=累計(jì)凈收入﹣累計(jì)投入,單位:千萬元),且當(dāng)f(n)為正值時(shí),認(rèn)為該項(xiàng)目贏利.
(1)試求f(n)的表達(dá)式;
(2)根據(jù)預(yù)測(cè),該項(xiàng)目將從哪一年開始并持續(xù)贏利?請(qǐng)說明理由.
(參考數(shù)據(jù): ,ln2≈0.7,ln3≈1.1)

查看答案和解析>>

同步練習(xí)冊(cè)答案