【題目】在如圖所示的幾何體中,四邊形為正方形,四邊形為直角梯形, , .
(1)求與平面所成角的正弦值;
(2)線段或其延長線上是否存在點,使平面平面?證明你的結論.
【答案】(1);(2)見解析
【解析】【試題分析】(1)以為坐標原點、方向為軸、方向為軸、方向為軸建立空間直角坐標系.通過計算直線的方向向量和平面的法向量來求線面角的正弦值.(2)設點的坐標為,計算平面和平面的法向量,通過兩個向量垂直數(shù)量積為零建立方程,求得的值.
【試題解析】
(1)解:以為坐標原點、方向為軸、方向為軸、方向為軸建立空間直角坐標系,
則點的坐標為、點的坐標為、點的坐標為、點的坐標為,點的坐標為,點的坐標為,
由, , ,設平面的法向量為
由,取,則
故與平面所成角的正弦值.
(2)證明:設點的坐標為,則,
設平面的法向量為
由,取,則,
若平面平面,則,解得: ,
故點在的延長線上,且.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為 (φ為參數(shù),0≤φ≤π),曲線C2的參數(shù)方程為 (t為參數(shù)).
(1)求C1的普通方程并指出它的軌跡;
(2)以O為極點,x軸的非負半軸為極軸建立極坐標系,射線OM:θ= 與半圓C的交點為O,P,與直線l的交點為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓.如圖所示,斜率為且不過原點的直線交橢圓于兩點,線段的中點為,射線交橢圓于點,交直線于點.
(Ⅰ)求的最小值;
(Ⅱ)若,
求證:直線過定點;
(ii)試問點能否關于軸對稱?若能,求出此時的外接圓方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)業(yè)余足球運動員共有15000人,其中男運動員9000人,女運動員6000人,為調查該地區(qū)業(yè)余足球運動員每周平均踢足球占用時間的情況,采用分層抽樣的方法,收集300位業(yè)務足球運動員每周平均踢足球占用時間的樣本數(shù)據(jù)(單位:小時)
得到業(yè)余足球運動員每周平均踢足球所占用時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:(0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
將“業(yè)務運動員的每周平均踢足球時間所占用時間超過4小時”
定義為“熱愛足球”.
附:K2=
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
(1)應收集多少位女運動員樣本數(shù)據(jù)?
(2)估計該地區(qū)每周平均踢足球所占用時間超過4個小時的概率.
(3)在樣本數(shù)據(jù)中,有80位女運動員“熱愛足球”.請畫出“熱愛足球與性別”列聯(lián)表,并判斷是否有99%的把握認為“熱愛足球與性別有關”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為響應十九大報告提出的實施鄉(xiāng)村振興戰(zhàn)略,某村莊投資 萬元建起了一座綠色農產品加工廠.經營中,第一年支出 萬元,以后每年的支出比上一年增加了 萬元,從第一年起每年農場品銷售收入為 萬元(前 年的純利潤綜合=前 年的 總收入-前 年的總支出-投資額 萬元).
(1)該廠從第幾年開始盈利?
(2)該廠第幾年年平均純利潤達到最大?并求出年平均純利潤的最大值.
【答案】(1) 從第 開始盈利(2) 該廠第 年年平均純利潤達到最大,年平均純利潤最大值為 萬元
【解析】試題分析:(1)根據(jù)公式得到,令函數(shù)值大于0解得參數(shù)范圍;(2)根據(jù)公式得到,由均值不等式得到函數(shù)最值.
解析:
由題意可知前 年的純利潤總和
(1)由 ,即 ,解得
由 知,從第 開始盈利.
(2)年平均純利潤
因為 ,即
所以
當且僅當 ,即 時等號成立.
年平均純利潤最大值為 萬元,
故該廠第 年年平均純利潤達到最大,年平均純利潤最大值為 萬元.
【題型】解答題
【結束】
21
【題目】已知數(shù)列 的前 項和為 ,并且滿足 , .
(1)求數(shù)列 通項公式;
(2)設 為數(shù)列 的前 項和,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知表示兩個不同的平面, 表示兩條不同直線,對于下列兩個命題:
①若,則“”是“”的充分不必要條件;
②若,則“”是“且”的充要條件.判讀正確的是( )
A. ①②都是真命題 B. ①是真命題,②是假命題
C. ①是假命題,②是真命題 D. ①②都是假命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a>0,b>0,c>0,函數(shù)f(x)=|x﹣a|+|x+b|+c的最小值為1.
(1)求a+b+c的值;
(2)求證:a2+b2+c2 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com