盒子中裝有編號(hào)為1,2,3,4,5,6,7的七個(gè)球,從中任意抽取兩個(gè),則這兩個(gè)球的編號(hào)之積為偶數(shù)的概率是  (結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示)

試題分析:從7個(gè)球中任取2個(gè)球共有=21種,
所取兩球編號(hào)之積為偶數(shù)包括均為偶數(shù)、一奇一偶兩種情況,共有=15種取法,
所以?xún)汕蚓幪?hào)之積為偶數(shù)的概率為:=
點(diǎn)評(píng):本題考查古典概型的概率計(jì)算公式,屬基礎(chǔ)題,其計(jì)算公式為:P(A)=,其中n(A)為事件A所包含的基本事件數(shù),m為基本事件總數(shù)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

,,則的概率是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某市2010年4月1日—4月30日對(duì)空氣污染指數(shù)的監(jiān)測(cè)數(shù)據(jù)如下(主要污染物為可吸入顆粒物):
61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.
(1)完成頻率分布表;
(2)作出頻率分布直方圖;
(3)根據(jù)國(guó)家標(biāo)準(zhǔn),污染指數(shù)在0~50之間時(shí),空氣質(zhì)量為優(yōu);在51~100之間時(shí),為良;在101~150之間時(shí),為輕微污染;在151~200之間時(shí),為輕度污染.
請(qǐng)你依據(jù)所給數(shù)據(jù)和上述標(biāo)準(zhǔn),對(duì)該市的空氣質(zhì)量給出一個(gè)簡(jiǎn)短評(píng)價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

的二項(xiàng)展開(kāi)式中任取項(xiàng),表示取出的項(xiàng)中有項(xiàng)系數(shù)為奇數(shù)的概率. 若用隨機(jī)變量表示取出的項(xiàng)中系數(shù)為奇數(shù)的項(xiàng)數(shù),則隨機(jī)變量的數(shù)學(xué)期望(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

下圖是某游戲中使用的材質(zhì)均勻的圓形轉(zhuǎn)盤(pán),其中Ⅰ,Ⅱ,Ⅲ,Ⅳ部分的面積各占轉(zhuǎn)盤(pán)面積的,,.游戲規(guī)則如下:

① 當(dāng)指針指到Ⅰ,Ⅱ, Ⅲ,Ⅳ部分時(shí),分別獲得積分100分,40分,10分,0分;
② (。┤魠⒓釉撚螒蜣D(zhuǎn)一次轉(zhuǎn)盤(pán)獲得的積分不是40分,則按①獲得相應(yīng)的積分,游戲結(jié)束;
(ⅱ)若參加該游戲轉(zhuǎn)一次獲得的積分是40分,則用拋一枚質(zhì)地均勻的硬幣的方法來(lái)決定是否繼續(xù)游戲.正面向上時(shí),游戲結(jié)束;反面向上時(shí),再轉(zhuǎn)一次轉(zhuǎn)盤(pán),若再轉(zhuǎn)一次的積分不高于40分,則最終積分為0分,否則最終積分為100分,游戲結(jié)束.
設(shè)某人參加該游戲一次所獲積分為
(1)求的概率;
(2)求的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在進(jìn)行一項(xiàng)擲骰子放球的游戲中規(guī)定:若擲出1點(diǎn)或2點(diǎn),則在甲盒中放一球;否則,在乙盒中放一球,F(xiàn)在前后一共擲了4次骰子,設(shè)、分別表示甲、乙盒子中球的個(gè)數(shù)。
(Ⅰ)求的概率;
(Ⅱ)若求隨機(jī)變量的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在正六邊形的6個(gè)頂點(diǎn)中隨機(jī)選擇4個(gè)頂點(diǎn),則構(gòu)成的四邊形是梯形的概率為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知連續(xù)型隨機(jī)變量的概率密度函數(shù)
,
(1)    求常數(shù)的值,并畫(huà)出的概率密度曲線;

(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

哈爾濱市五一期間決定在省婦女兒中心舉行中學(xué)生“藍(lán)天綠樹(shù)、愛(ài)護(hù)環(huán)境”圍棋比賽,規(guī)定如下:
兩名選手比賽時(shí)每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對(duì)方多3分或打滿(mǎn)7局時(shí)停止.
設(shè)某學(xué)校選手甲和選手乙比賽時(shí),甲在每局中獲勝的概率為,且各局勝負(fù)相互獨(dú)立.已知
第三局比賽結(jié)束時(shí)比賽停止的概率為
(1)求的值;
(2)求甲贏得比賽的概率;
(3)設(shè)表示比賽停止時(shí)已比賽的局?jǐn)?shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案