【題目】已知以點C(t∈R,t≠0)為圓心的圓與x軸交于點O和點A,與y軸交于點O和點B,其中O為原點.
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y=-2x+4與圓C交于點M,N,若OM=ON,求圓C的方程.
【答案】(1)證明見解析(2)圓C的方程為(x-2)2+(y-1)2=5
【解析】
(1)先求出圓C的方程(x-t)2+=t2+,再求出|OA|,|0B|的長,即得△OAB的面積為定值;(2)根據(jù)t得到t=2或t=-2,再對t分類討論得到圓C的方程.
(1)證明:因為圓C過原點O,所以OC2=t2+.
設(shè)圓C的方程是(x-t)2+=t2+,
令x=0,得y1=0,y2=;
令y=0,得x1=0,x2=2t,
所以S△OAB=OA·OB=×|2t|×||=4,
即△OAB的面積為定值.
(2)因為OM=ON,CM=CN,所以OC垂直平分線段MN.
因為kMN=-2,所以kOC=.
所以t,解得t=2或t=-2.
當(dāng)t=2時,圓心C的坐標(biāo)為(2,1),OC=,
此時,圓心C到直線y=-2x+4的距離d=<,圓C與直線y=-2x+4相交于兩點.
符合題意,此時,圓的方程為(x-2)2+(y-1)2=5.
當(dāng)t=-2時,圓心C的坐標(biāo)為(-2,-1),OC=,此時C到直線y=-2x+4的距離d=.圓C與直線y=-2x+4不相交,
所以t=-2不符合題意,舍去.
所以圓C的方程為(x-2)2+(y-1)2=5.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A. 在回歸模型中,預(yù)報變量的值不能由解釋變量唯一確定
B. 若變量,滿足關(guān)系,且變量與正相關(guān),則與也正相關(guān)
C. 在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D. 以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),將其變換后得到線性方程,則,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線.
(1)若直線與圓交于不同的兩點,,當(dāng)時,求的值;
(2)若,是直線上的動點,過作圓的兩條切線,切點為,探究:直線是否過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)的圖象, 只需將函數(shù)的圖象( )
A. 所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個單位.
B. 所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個單位.
C. 所有點的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個單位.
D. 所有點的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個單位.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分別為線段AD,PC的中點.
(1)求證:AP∥平面BEF;
(2)求證:BE⊥平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求該函數(shù)的最大值;
(2)是否存在實數(shù),使得該函數(shù)在閉區(qū)間上的最大值為?若存在,求出對應(yīng)的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)若的圖像過點,且在點P處的切線方程為,試求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,若函數(shù)恒成立,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視節(jié)目為選拔出現(xiàn)場錄制嘉賓,在眾多候選人中隨機抽取100名選手,按選手身高分組,得到的頻率分布表如圖所示.
(1)請補充頻率分布表中空白位置相應(yīng)數(shù)據(jù),再在答題紙上完成下列頻率分布直方圖;
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | 0.050 | |
第2組 | 0.350 | ||
第3組 | 30 | ||
第4組 | 20 | 0.200 | |
第5組 | 10 | 0.100 | |
合計 | 100 | 1.00 |
(2)為選拔出舞臺嘉賓,決定在第3、4、5組中用分層抽樣抽取6人上臺,求第3、4、5組每組各抽取多少人?
(3)求選手的身高平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從原點向圓 作兩條切線,切點分別為,,記切線,的斜率分別為,.
(Ⅰ)若圓心,求兩切線,的方程;
(Ⅱ)若,求圓心的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com