【題目】在正方體ABCD﹣A1B1C1D1中,點(diǎn)Q為對角面A1BCD1內(nèi)一動(dòng)點(diǎn),點(diǎn)M、N分別在直線ADAC上自由滑動(dòng),直線DQMN所成角的最小值為θ,則下列結(jié)論中正確的是(  )

A. θ=15°,則點(diǎn)Q的軌跡為橢圓的一部分

B. θ=30°,則點(diǎn)Q的軌跡為橢圓的一部分

C. θ=45°,則點(diǎn)Q的軌跡為橢圓的一部分

D. θ=60°,則點(diǎn)Q的軌跡為橢圓的一部分

【答案】D

【解析】

先確定空間中所有滿足直線DQMN所成角的最小值為θ的點(diǎn),構(gòu)成一個(gè)以D為頂點(diǎn),母線與軸DD1夾角為90°﹣θ的圓錐側(cè)面,再根據(jù)從與圓錐曲面所截的角度確定軌跡形狀即可得結(jié)論.

直線DQMN所成角的最小值即為直線DQ與平面ABCD的夾角,

則空間中所有滿足直線DQMN所成角的最小值為θ的點(diǎn),構(gòu)成一個(gè)以D為頂點(diǎn),

母線與軸DD1夾角為90°﹣θ的圓錐側(cè)面,

對角面A1BCD1與底面ABCD夾角為45°

故當(dāng)θ45°,則點(diǎn)Q的軌跡為橢圓的一部分

當(dāng)θ=45°,則點(diǎn)Q的軌跡為拋物線的一部分

當(dāng)θ45°,則點(diǎn)Q的軌跡為雙曲線的一部分

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,傾斜角為的直線與橢圓相交于兩點(diǎn),且線段的中點(diǎn)為.過橢圓內(nèi)一點(diǎn)的兩條直線分別與橢圓交于點(diǎn),且滿足,其中為實(shí)數(shù).當(dāng)直線平行于軸時(shí),對應(yīng)的

(Ⅰ)求橢圓的方程;

(Ⅱ)當(dāng)變化時(shí),是否為定值?若是,請求出此定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
(1)求∠C
(2)若△ABC的面積為5 ,b=5,求sinA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
(1)求∠C
(2)若△ABC的面積為5 ,b=5,求sinA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如表是一個(gè)由n2個(gè)正數(shù)組成的數(shù)表,用aij表示第i行第j個(gè)數(shù)(i,j∈N),已知數(shù)表中第一列各數(shù)從上到下依次構(gòu)成等差數(shù)列,每一行各數(shù)從左到右依次構(gòu)成等比數(shù)列,且公比都相等.已知a11=1,a31+a61=9,a35=48.

(1)求an1和a4n;
(2)設(shè)bn= +(﹣1)na (n∈N+),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2,∠BAD=60°,M為DC的中點(diǎn),若N為菱形內(nèi)任意一點(diǎn)(含邊界),則 的最大值為(

A.3
B.2
C.6
D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn), 是橢圓上的點(diǎn),設(shè)動(dòng)點(diǎn)滿足.

1)求動(dòng)點(diǎn)的軌跡的方程;

2)若直線與曲線相交于, 兩個(gè)不同點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,命題,不等式恒成立;命題,不等式恒成立.

(1)若命題為真命題,求實(shí)數(shù)的取值范圍;

(2)若為假,為真,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1+2a2+3a3+…+nan=n(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)令 ,寫出Tn關(guān)于n的表達(dá)式,并求滿足Tn 時(shí)n的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案