如圖,空間四邊形S-ABC中,各邊及對角線長都相等,若E、F分別為SC、AB的中點,那么異面直線EF與SA所成的角等于(    )
A.90°         B.60°         C.45°         D.30°
C
中點,連接。因為分別是中點,所以,同理可得,所以是異面直線所成角。因為空間四邊形各邊即對角線長都相等,而點中點,所以,從而有,所以。因為,所以。而,則,故選C
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本題滿分12分)如圖,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D為AC的中點.
(1)求證:AB1// 面BDC1;
(2)求二面角C1—BD—C的余弦值;
(3)在側(cè)棱AA­1上是否存在點P,使得CP⊥面BDC1?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知四棱錐的底面為直角梯形,,底面,且,,的中點。
(Ⅰ)證明:面
(Ⅱ)求所成的角的余弦值;
(Ⅲ)求面與面所成二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖四棱錐的底面是正方形,,點E在棱PB上,O為AC與BD的交點。
(1)求證:平面
2)當(dāng)E為PB中點時,求證://平面PDA,//平面PDC。
(3)當(dāng)且E為PB的中點時,求與平面所成的角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在直三棱柱中,、分別為、的中點。
(I)證明:ED為異面直線的公垂線;
(II)設(shè)求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)
在三棱錐中,
(1)證明:;
(2)求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐S-ABCD的底面是正方形,每條側(cè)棱的長都是地面邊長的倍,P為側(cè)棱SD上的點。
(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小
(3)在(2)的條件下,側(cè)棱SC上是否存在一點E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

、(本小題滿分13分).在正方體ABCD-A1B1C1D1中,M、N、P分別是CC1、B1C1、C1D1的中點.(溫馨提示:該題要在答題卡上作圖,否則扣分)。
(1) 求異面直線PN、AC所成角;  (2) 求證:平面MNP∥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知球的直徑SC= 4,A,B是該球球面上的兩點,,,則棱錐S-ABC的體積為  (   )
A.B.C.D.19

查看答案和解析>>

同步練習(xí)冊答案