計(jì)算(lg
1
2
-lg50)
÷1000-
1
3
=
 
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知條件,利用對(duì)數(shù)和指數(shù)的運(yùn)算法則直接求解.
解答: 解:(lg
1
2
-lg50)
÷1000-
1
3

=lg(
1
2
×
1
50
)
 
×1000
1
3

=lg
1
100
×10
=-2×10
=-20.
故答案為:-20.
點(diǎn)評(píng):本題考查對(duì)數(shù)和指數(shù)的運(yùn)算法則的應(yīng)用,是基礎(chǔ)題,解題時(shí)要熟練掌握對(duì)數(shù)和指數(shù)的性質(zhì)和運(yùn)算法則.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙、丙三人按下面的規(guī)則進(jìn)行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與輪空者進(jìn)行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進(jìn)行到其中一人連勝兩局或打滿6局時(shí)停止.設(shè)在每局中參賽者勝負(fù)的概率均為
1
2
,且各局勝負(fù)相互獨(dú)立.求:
(Ⅰ)打滿4局比賽還未停止的概率;
(Ⅱ)比賽停止時(shí)已打局?jǐn)?shù)ξ的分布列與期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正四棱錐的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)均為
3
,其正視圖和側(cè)視圖是全等的等腰三角形,則正視圖的周長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(平面幾何選做題)
已知AB為半圓O的直徑,AB=4,C為半圓上一點(diǎn),過(guò)點(diǎn)C作半圓的切線CD,過(guò)點(diǎn)A作AD⊥CD于D,交半圓O于點(diǎn)E,DE=1,則BC的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
=(1,λ,λ-λ2)
b
=(2,1,
1
2
)
,且
a
b
的夾角為銳角,則λ的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin
7
6
π
+cos(-
π
3
)+tan(
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,由y=x2+2、y=3x、x=0所圍成的陰影區(qū)域的面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={y|y=x2-2x},B={x|y=log2(3-x),則A∩B=( 。
A、∅B、(-1,3)
C、[-1,3)D、[-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l1:x+ay+1=0與l2:(a-3)x+2y-5=0(a∈R)互相垂直,則直線l2的斜率為( 。
A、
1
2
B、-
1
2
C、1
D、-1

查看答案和解析>>

同步練習(xí)冊(cè)答案