求數(shù)列2,4,8,16,…前十項(xiàng)的和.
分析:由題設(shè)可知,S10 =
a1 (q10 -1)
q-1
=
2•(210 -1)
2-1
=2046
解答:解:由題設(shè)可知,此等比數(shù)列的首項(xiàng)a1=2公比q=2,
S10 =
a1 (q10 -1)
q-1
=
2•(210 -1)
2-1
=2046
點(diǎn)評(píng):本題考查等比數(shù)列的前n項(xiàng)和公式,解題時(shí)注意此等比數(shù)列的首項(xiàng)a1=2公比q=2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果有窮數(shù)列a1,a2,a3,…,am(m為正整數(shù))滿(mǎn)足條件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我們稱(chēng)其為“對(duì)稱(chēng)數(shù)列”.例如,數(shù)列1,2,5,2,1與數(shù)列8,4,2,2,4,8都是“對(duì)稱(chēng)數(shù)列”.
(1)設(shè){bn}是7項(xiàng)的“對(duì)稱(chēng)數(shù)列”,其中b1,b2,b3,b4是等差數(shù)列,且b1=2,b4=11.依次寫(xiě)出{bn}的每一項(xiàng);
(2)設(shè){cn}是49項(xiàng)的“對(duì)稱(chēng)數(shù)列”,其中c25,c26,…,c49是首項(xiàng)為1,公比為2的等比數(shù)列,求{cn}各項(xiàng)的和S;
(3)設(shè){dn}是100項(xiàng)的“對(duì)稱(chēng)數(shù)列”,其中d51,d52,…,d100是首項(xiàng)為2,公差為3的等差數(shù)列.求{dn}前n項(xiàng)的和Sn(n=1,2,…,100).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a2=8,前10項(xiàng)和S10=185.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若從數(shù)列{an}中依次取出第2,4,8,…,2n,…項(xiàng),按原來(lái)的順序排成一個(gè)新的數(shù)列,試求新數(shù)列的前n項(xiàng)和An

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中a2=8,S10=185.
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)若從數(shù)列{an}中依次取出第2,4,8,…,2n,…項(xiàng),按原來(lái)的順序排成一個(gè)新數(shù)列{bn},試求{bn}的前n項(xiàng)和An

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}(n∈N*)中,a2=8,前10項(xiàng)和S10=185.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{
1anan+1
}
的前n項(xiàng)和Tn;
(Ⅲ)若從數(shù)列{an}中依次取出第2,4,8,…,2n,…項(xiàng),按原來(lái)的順序排成一個(gè)新的數(shù)列{bn},試求新數(shù)列{bn}的前n項(xiàng)和An

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a2=8,S10=185.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若從數(shù)列{an}中依次取出第2,4,8,…,2n,…項(xiàng),按原來(lái)的順序排成一個(gè)新數(shù)列{bn},試求{bn}的前n項(xiàng)和An,并比較An與nan的大。╪∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案