4.函數(shù)y=f(x)的圖象如圖所示,則下列數(shù)值排序正確的是( 。
A.f′(1)<f′(2)<f(2)-f(1)B.f′(2)<f′(1)<f(2)-f(1)C.f′(2)<f(2)-f(1)<f′(1)D.f(2)-f(1)<f′(1)<f′(2)

分析 根據(jù)導(dǎo)數(shù)的概念和圖象進(jìn)行判斷.

解答 解:f′(2)、f′(3)是 x 分別為2、3時對應(yīng)圖象上點的切線斜率,f (3)-f (2)=$\frac{f(3)-f(2)}{2-1}$,
∴f (3)-f (2)為圖象上 x 為2和3對應(yīng)兩點連線的斜率,
所以f′(2)<f(2)-f(1)<f′(1),
故選C.

點評 考查了導(dǎo)數(shù)的概念和對概念的簡單應(yīng)用,屬于常規(guī)題型應(yīng)熟練掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,直線C1的極坐標(biāo)方程是ρsinθ+ρcosθ-1=0,圓C2的參數(shù)方程是$\left\{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}\right.$(α是參數(shù)).
(1)求直線C1和圓C2的交點的極坐標(biāo);
(2)若直線l經(jīng)過直線C1和圓C2交點的中點,且垂直于直線C1,求直線l的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,⊙O是△ABC的外接圓,D是$\widehat{AC}$的中點,BD交AC于點E.
(I)求證:AB•CD=BD•AE
(Ⅱ)若CD=2,AC=2$\sqrt{3}$,求⊙O的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,AB是圓O的直徑,BC與圓O相切于B,∠ADC+∠DCO=180°
(Ⅰ)證明:∠BCO=∠DCO;
(Ⅱ)若⊙O半徑為R,求AD•OC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.矩形ABCD中,AB=2,AD=1,P為矩形內(nèi)部一點,且AP=1.若$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AD}$(λ,μ∈R),則2λ+$\sqrt{3}$μ的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=lnx-ax,a∈R.
(1)當(dāng)a=1時,求f(x)的極值;
(2)若函數(shù)y=f(x)有兩個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=x2-ax-3在區(qū)間(-∞,4]上單調(diào)遞減,則實數(shù)a的取值范圍是a≥8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知三棱柱ABC-A1B1C1如圖所示,其中CA⊥平面ABB1A1,四邊形ABB1A1為菱形,∠AA1B1=60°,E為BB1的中點,F(xiàn)為CB1的中點.
(1)證明:平面AEF⊥平面CAA1C1
(2)若CA=2,AA1=4,求B1到平面AEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若集合A={1,2,3}和B及C={1,2,3,4,5},且集合B滿足A∩B=A和C∪B=C,則集合B的個數(shù)為4.

查看答案和解析>>

同步練習(xí)冊答案