平面幾何中,有邊長為a的正三角形內(nèi)任一點到三邊距離之和為定值
3
2
a
,類比上述命題,棱長為a的正四面體內(nèi)任一點到四個面的距離之和為( 。
A.
4
3
a
B.
6
3
a
C.
5
4
a
D.
6
4
a
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

平面幾何中有命題“正三角形內(nèi)任意一點到三邊的距離之和等于定值,大小為邊長的
3
2
倍”,請你寫出此命題在立體幾何中類似的真命題
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記三角形面積為S,三條邊長分別為a,b,c,內(nèi)切圓半徑為r,則平面幾何有性質(zhì):S=
1
2
(a+b+c)•r.若記四面體的體積為V,四個面面積分別為S1,S2,S3,S4,內(nèi)切球半徑為R,請你用類比方法寫出立體幾何中相似的性質(zhì)
V=
1
3
(S1+S2+S3+S4)•R
V=
1
3
(S1+S2+S3+S4)•R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面幾何中,有邊長為a的正三角形內(nèi)任一點到三邊距離之和為定值
3
2
a
,類比上述命題,棱長為a的正四面體內(nèi)任一點到四個面的距離之和為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅省慶陽市華池一中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

平面幾何中,有邊長為a的正三角形內(nèi)任一點到三邊距離之和為定值,類比上述命題,棱長為a的正四面體內(nèi)任一點到四個面的距離之和為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案