精英家教網 > 高中數學 > 題目詳情
6.已知動點P在曲線2x2-y=0上移動,則點A(0,-1)與點P連線中點的軌跡方程是(  )
A.y=2x2B.y=8x2C.$y=4{x^2}+\frac{1}{2}$D.$y=4{x^2}-\frac{1}{2}$

分析 先設AP中點為(x,y),進而根據中點的定義可求出P點的坐標,然后代入到曲線方程中得到軌跡方程.

解答 解:設AP中點為(x,y),則P(2x,2y+1)在2x2-y=0上,即2(2x)2-(2y+1)=0,
∴2y=8x2-1,即y=4x2-$\frac{1}{2}$.
故選D.

點評 本題主要考查軌跡方程的求法,正確運用代入法是關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

2.已知集合A={x|3≤3x≤27},B={x|log2x>1}.
(Ⅰ)求A∩B,A∪B;
(Ⅱ)已知非空集合C={x|1<x≤a},若C⊆A,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.若函數f(x)=$\frac{(2+m)x}{{x}^{2}-m}$的圖象如圖所示,則m的范圍為(  )
A.(1,+∞)B.(-2,-1)C.(-2,0)D.(-2,1)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.將一塊邊長為10的正方形鐵片按圖1所示的陰影部分裁下,用余下的四個全等的等腰三角形加工成一個底面邊長為x的正四棱錐形容器(如圖2),則函數f(x)=$\frac{{V}_{E-ABCD}}{x}$的最大值為( 。
A.$\frac{25\sqrt{3}}{6}$B.$\frac{50}{3}$C.$\frac{25}{3}$D.$\frac{125\sqrt{3}}{6}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.設雙曲線C的中心為點O,若有且只有一對相交于點O、所成的角為60°的直線A1B1和A${2}_{\;}^{\;}$B2,使|A1B1|=|A${2}_{\;}^{\;}$B2|,其中A1、B1和A2、B2分別是這對直線與雙曲線C的交點,則該雙曲線的離心率的取值范圍是$(\frac{{2\sqrt{3}}}{3},2]$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.已知球面上的四點P、A、B、C,PA、PB、PC的長分別為3、4、5,且這三條線段兩兩垂直,則這個球的體積為( 。
A.$\frac{{1000\sqrt{2}}}{3}π$B.$\frac{{375\sqrt{2}}}{16}π$C.50πD.$\frac{{125\sqrt{2}}}{3}π$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知函數f(x)=log${\;}_{\frac{1}{2}}$$\sqrt{-{x}^{2}+2x+8}$.
(1)求f(x)的定義域;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.若點A的坐標為($\frac{1}{2}$,2),F是拋物線y2=2x的焦點,點M在拋物線上移動時,使|MF|+|MA|取得最小值的M的坐標為($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.設等差數列{an}的前n項和為Sn,若S3=3,S6=15,則a10+a11+a12=( 。
A.21B.30C.12D.39

查看答案和解析>>

同步練習冊答案