若長方體的三個共頂點的面的面積分別是,,則長方體的體積是    
【答案】分析:長方體的體積是共頂點的三個棱的長度的乘積,故求出三者乘積即可,由于本題中知道了共頂點的三個面的面積,即知道了共頂點的三邊兩兩邊長的乘積,故可以用共頂點的三個棱的長度表示出三個面積,得到關(guān)于三個量的三個方程,由此方程組解出三條棱的長度,即可求出長方體的體積.
解答:解:可設(shè)長方體同一個頂點上的三條棱長分別為a,b,c,列出方程組解得
所以長方體的體積V=1××=
故答案為
點評:本題考點是棱柱、棱錐、棱臺的體積,考查根據(jù)題目中所給的條件求出三個棱長的長度,再由長方體的體積公式求出體積的能力,本題直接利用公式建立方程求解,題目較易.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若長方體的三個共頂點的面的面積分別是
2
,
3
,
6
,則長方體的體積是
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若長方體的三個共頂點的面的面積分別是
2
,
3
,
6
,則長方體的體積是 ______.

查看答案和解析>>

科目:高中數(shù)學 來源:南通市二輪天天練(15)(解析版) 題型:解答題

若長方體的三個共頂點的面的面積分別是,,,則長方體的體積是    

查看答案和解析>>

科目:高中數(shù)學 來源:2010年高三數(shù)學(理科)二輪天天練(14)(解析版) 題型:解答題

若長方體的三個共頂點的面的面積分別是,,則長方體的體積是    

查看答案和解析>>

同步練習冊答案