12.已知函數(shù)f(x)=$\sqrt{1+a•{4^x}}$的定義域?yàn)椋?∞,-1],則實(shí)數(shù)a=-4.

分析 根據(jù)二次根式的性質(zhì)得到a•4x≥-1在x∈(-∞,-1]恒成立,通過討論a的符號(hào),得到關(guān)于a的方程,從而求出a的值即可.

解答 解:由題意得:
1+a•4x≥0在x∈(-∞,-1]恒成立,
∴a•4x≥-1在x∈(-∞,-1]恒成立,
a≥0時(shí),a•4x≥-1在R恒成立,定義域是R,與定義域?yàn)椋?∞,-1]不符,
a<0時(shí),4x≤-$\frac{1}{a}$,x≤${log}_{4}^{(-\frac{1}{a})}$=-1,
∴-$\frac{1}{a}$=$\frac{1}{4}$,解得:a=-4,
故答案為:-4.

點(diǎn)評(píng) 本題考查了函數(shù)的定義域以及二次根式的性質(zhì)、指數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=ax+b和函數(shù)y=ax2+bx+c的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題中,真命題是( 。
A.?x0∈R,使得ex0≤0B.sinx+$\frac{1}{sinx}$≥2(x≠kπ,k∈Z)
C.?x∈R,2x>x2D.a>1,b>1是ab>1的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)M(x0,y0)是橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上一點(diǎn),A,B是其左,右頂點(diǎn),2$\overrightarrow{AM}$•$\overrightarrow{BM}$=$x_0^2$-a2,則離心率e=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{4}{5}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若正實(shí)數(shù)a,b滿足a+b=4,則log2a+log2b的最大值是( 。
A.18B.2C.2$\sqrt{3}$D.2$\root{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求M在AB的延長線上,N在AD的延長線上,且對(duì)角線MN過點(diǎn)C,已知AB=3米,AD=2米,記矩形AMPN的面積為S平方米.
(1)按下列要求建立函數(shù)關(guān)系;
(i)設(shè)AN=x米,將S表示為x的函數(shù);
(ii)設(shè)∠BMC=θ(rad),將S表示為θ的函數(shù).
(2)請(qǐng)你選用(1)中的一個(gè)函數(shù)關(guān)系,求出S的最小值,并求出S取得最小值時(shí)AN的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為了滿足社區(qū)居民健身活動(dòng),某社區(qū)準(zhǔn)備在一塊大約400m×400m的接近正方形荒地上建一個(gè)健身活動(dòng)廣場(chǎng),首先要建設(shè)如圖所示的一個(gè)總面積為4000m2的矩形場(chǎng)地,其中陰影部分為通道,通道寬度均為2米,中間的三個(gè)矩形區(qū)域?qū)佋O(shè)塑膠地面作為健身運(yùn)動(dòng)場(chǎng)地(其中兩個(gè)小場(chǎng)地形狀相同),怎樣設(shè)計(jì)矩形場(chǎng)地的長和寬,使塑膠運(yùn)動(dòng)場(chǎng)地占地面積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若0<x<1,則$\sqrt{(x-\frac{1}{x})^{2}+4}$-$\sqrt{(x+\frac{1}{x})^{2}-4}$等于2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)集合A={2,3,a2+2a-3},B={x||x-a|<2}
(1)當(dāng)a=2時(shí),求A∩B;
(2)若0∈A∩B,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案