(2013•東城區(qū)一模)如圖,已知AD⊥平面ABC,CE⊥平面ABC,F(xiàn)為BC的中點(diǎn),若AB=AC=AD=
12
CE

(Ⅰ)求證:AF∥平面BDE;
(Ⅱ)求證:平面BDE⊥平面BCE.
分析:(I)取BE的中點(diǎn)G,連接GF,GD.利用三角形的中位線(xiàn)定理即可得到GF∥EC,GF=
1
2
CE
.由AD⊥平面ABC,CE⊥平面ABC,利用線(xiàn)面垂直的性質(zhì)定理即可得到AD∥EC,進(jìn)而即可判斷四邊形AFGD 為平行四邊形,得到AF∥DG,再利用線(xiàn)面平行的判定定理即可證明;
(II)利用等腰三角形的性質(zhì)即可得到AF⊥BC,再利用線(xiàn)面垂直的性質(zhì)得到GF⊥AF,利用線(xiàn)面垂直的判定定理即可證明AF⊥平面BEC,而DG∥AF,得到DG⊥平面BEC,利用面面垂直的定理即可證明結(jié)論.
解答:證明:(Ⅰ)取BE的中點(diǎn)G,連接GF,GD.
∵F是BC的中點(diǎn),
則GF為△BCE的中位線(xiàn).
∴GF∥EC,GF=
1
2
CE

∵AD⊥平面ABC,CE⊥平面ABC,
∴GF∥EC∥AD.
又∵AD=
1
2
CE
,
∴GF=AD.
∴四邊形GFAD為平行四邊形.
∴AF∥DG.
∵DG?平面BDE,AF?平面BDE,
∴AF∥平面BDE.
(Ⅱ)∵AB=AC,F(xiàn)為BC的中點(diǎn),
∴AF⊥BC.
∵EC∥GF,EC⊥平面ABC,∴GF⊥平面ABC.
又AF?平面ABC,
∴GF⊥AF.
∵GF∩BC=F,
∴AF⊥平面BCE.
∵AF∥DG,
∴DG⊥平面BCE.
又DG?平面BDE,
∴平面BDE⊥平面BCE.
點(diǎn)評(píng):熟練掌握三角形的中位線(xiàn)定理、線(xiàn)面垂直的判定定理和性質(zhì)定理、等腰三角形的性質(zhì)、平行四邊形的判定和性質(zhì)、面面垂直的判定定理是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)一模)設(shè)A是由n個(gè)有序?qū)崝?shù)構(gòu)成的一個(gè)數(shù)組,記作:A=(a1,a2,…,ai,…,an).其中ai(i=1,2,…,n)稱(chēng)為數(shù)組A的“元”,S稱(chēng)為A的下標(biāo).如果數(shù)組S中的每個(gè)“元”都是來(lái)自 數(shù)組A中不同下標(biāo)的“元”,則稱(chēng)A=(a1,a2,…,an)為B=(b1,b2,…bn)的子數(shù)組.定義兩個(gè)數(shù)組A=(a1,a2,…,an),B=(b1,b2,…,bn)的關(guān)系數(shù)為C(A,B)=a1b1+a2b2+…+anbn
(Ⅰ)若A=(-
1
2
,
1
2
)
,B=(-1,1,2,3),設(shè)S是B的含有兩個(gè)“元”的子數(shù)組,求C(A,S)的最大值;
(Ⅱ)若A=(
3
3
,
3
3
,
3
3
)
,B=(0,a,b,c),且a2+b2+c2=1,S為B的含有三個(gè)“元”的子數(shù)組,求C(A,S)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)一模)某游戲規(guī)則如下:隨機(jī)地往半徑為1的圓內(nèi)投擲飛標(biāo),若飛標(biāo)到圓心的距離大于
1
2
,則成績(jī)?yōu)榧案;若飛標(biāo)到圓心的距離小于
1
4
,則成績(jī)?yōu)閮?yōu)秀;若飛標(biāo)到圓心的距離大于
1
4
且小于
1
2
,則成績(jī)?yōu)榱己,那么在所有投擲到圓內(nèi)的飛標(biāo)中得到成績(jī)?yōu)榱己玫母怕蕿椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)一模)函數(shù)f(x)=sin(x-
π
3
)
的圖象為C,有如下結(jié)論:
①圖象C關(guān)于直線(xiàn)x=
6
對(duì)稱(chēng);
②圖象C關(guān)于點(diǎn)(
3
,0)
對(duì)稱(chēng);
③函數(shù)f(x)在區(qū)間[
π
3
,
6
]
內(nèi)是增函數(shù),
其中正確的結(jié)論序號(hào)是
①②③
①②③
.(寫(xiě)出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)一模)已知全集U={1,2,3,4},集合A={1,2},那么集合?UA為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)一模)數(shù)列{an}的各項(xiàng)排成如圖所示的三角形形狀,其中每一行比上一行增加兩項(xiàng),若an=an(a≠0),則位于第10行的第8列的項(xiàng)等于
a89
a89
,a2013在圖中位于
第45行的第77列
第45行的第77列
.(填第幾行的第幾列)

查看答案和解析>>

同步練習(xí)冊(cè)答案