11.已知集合M={x|x=k+$\frac{1}{2}$,k∈Z},N={x|x=$\frac{k}{2}$+1,k∈Z},若x0∈M,則x0與N的關(guān)系是( 。
A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能確定

分析 根據(jù)元素與集合的關(guān)系進(jìn)行判斷.

解答 解:由題意,集合M={x|x=k+$\frac{1}{2}$,k∈Z}={x|x=$\frac{2k+1}{2}$,k∈Z},此集合是全體奇數(shù)的一半組成的集合;
集合N={x|x=$\frac{k}{2}$+1,k∈Z}={x|x=$\frac{k+2}{2}$,k∈Z},此集合是全體整數(shù)的一半組成的集合;
∴x0∈M,必有x0∈N,而當(dāng)x0∈N時,不一定有x0∈M.
故選A.

點評 本題主要考查元素與集合的關(guān)系,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按200元/次收費,并注冊成為會員,對會員逐次消費給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如表:
消費次第第1次第2次第3次第4次≥5次
收費比例10.950.900.850.80
該公司從注冊的會員中,隨機(jī)抽取了100位進(jìn)行統(tǒng)計,得到統(tǒng)計數(shù)據(jù)如表:
消費次第第1次第2次第3次第4次第5次
頻數(shù)60201055
假設(shè)汽車美容一次,公司成本為150元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)估計該公司一位會員至少消費兩次的概率;
(2)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;
(3)設(shè)該公司從至少消費兩次,求這的顧客消費次數(shù)用分層抽樣方法抽出8人,再從這8人中抽出2人發(fā)放紀(jì)念品,求抽出2人中恰有1人消費兩次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x|y=ln(-x2+3x+4)},B={y|y=2${\;}^{-{x^2}+2x+2}}$,x∈R},則A∩B=(  )
A.(0,1)B.(0,4)C.(3,4)D.(4,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在數(shù)列{an}中,a1=1,an+1=an+c(c為常數(shù),n∈N+,且a1,a2,a5成公比q≠1的等比數(shù)列.
(1)求c的值;
(2)數(shù)列{bn}的前n項和為Sn且滿足:an•an+1•bn=1,求證:$\frac{1}{3}$≤Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知直線a、b和平面α,下列說法中正確的有⑦.
①若a∥α,b∥α,則a∥b;            
②若a∥b,b∥α,則a∥α;
③若a∥α,b?α,則a∥b;
④若直線a∥b,直線b?α,則a∥α;
⑤若直線a在平面α外,則a∥α;
⑥直線a平行于平面α內(nèi)的無數(shù)條直線,則a∥α;
⑦若直線a∥b,b?α,那么直線a就平行于平面α內(nèi)的無數(shù)條直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知{a,b,c}={0,1,2},且下列三個關(guān)系:a≠2,b=2,c≠0只有一個正確,則100c+10b+a=102.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l:mx-(m2+1)y=3(m≥0).
(1)求直線l斜率的取值范圍;
(2)若直線l被圓C:x2+y2-2y-8=0截得的弦長為4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.定義在R上的函數(shù)f(x)對任意實數(shù)x滿足f(1+x)=f(1-x)與f(x+2)=f(x),且當(dāng)x∈[3,4]時,f(x)=x-2,則$f(\frac{1}{2})$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知樣本3,4,x,7,5的平均數(shù)是5,則此樣本的方差為2.

查看答案和解析>>

同步練習(xí)冊答案