3.不等式$\frac{x-2}{x+3}$≥0的解集為(-∞,-3)∪[2,+∞)(用區(qū)間表示)

分析 化分式不等式為不等式組求解,取并集得答案.

解答 解:由$\frac{x-2}{x+3}$≥0,得$\left\{\begin{array}{l}{x-2≥0}\\{x+3>0}\end{array}\right.$或$\left\{\begin{array}{l}{x-2≤0}\\{x+3<0}\end{array}\right.$,
解得:x≥2或x<-3.
∴不等式$\frac{x-2}{x+3}$≥0的解集為(-∞,-3)∪[2,+∞).
故答案為:(-∞,-3)∪[2,+∞).

點評 本題考查分式不等式的解法,考查數(shù)學轉化思想方法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.數(shù)列{an}中,設Sn是它的前n項和,若log2(Sn+1)=n+1,則數(shù)列{an}的通項公式an=$\left\{\begin{array}{l}{3,n=1}\\{{2}^{n},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.從2、3、8、9任取兩個不同的數(shù)值,分別記為a,b,則logab為整數(shù)的概率(  )
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若點O和點F分別為橢圓$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的中心和左焦點,點P為橢圓上任一點,則$\overrightarrow{OP}$•$\overrightarrow{FP}$的最小值為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知向量$\overrightarrow m=(b,\sqrt{3}a)$,$\overrightarrow n=(cosB,sinA)$,且$\overrightarrow m∥\overrightarrow n$.
(1)求角B的大。
(2)若b=2,△ABC的面積為$\sqrt{3}$,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.不等式log${\;}_{\frac{1}{2}}$(2x+1)≥log${\;}_{\frac{1}{2}}$3的解集為$({-\frac{1}{2},1}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知直線l1:3x+4y-3=0,l2:6x+8y+n=0,則“n=14 是“l(fā)1,l2之間距離為2”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.△ABC的內角A、B、C的對邊分別為a、b、c,若sinA,sinB,sinC成等比數(shù)列,且c=2a,則cosB=( 。
A.$-\frac{2}{5}$B.$\frac{2}{5}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知定義在R上的函數(shù)f(x)為偶函數(shù),且滿足f(x)=f(x+2),f(-1)=1,若數(shù)列{an}的前n項和Sn滿足2Sn=an+1,a1=$\frac{1}{2}$,則f(a5)+f(a6)=(  )
A.4B.2C.1D.0

查看答案和解析>>

同步練習冊答案