【題目】如下圖,三棱柱ABC-A1B1Cl中,M,N分別為CC1,A1B1的中點(diǎn).CA⊥CB1,CA=CB1,BA=BC=BB1.
(I)求證:直線(xiàn)MN//平面CAB1;
(II)求證:直線(xiàn)BA1⊥平面CAB1.
【答案】(I)詳見(jiàn)解析;(II)詳見(jiàn)解析.
【解析】試題分析:(Ⅰ)設(shè)與交于點(diǎn),連接,根據(jù)中位線(xiàn)定理, ,又因?yàn)?/span>,所以,所以四邊形是平行四邊形,所以. (Ⅱ)因?yàn)?/span>,所以平行四邊形是菱形,所以, 是的中點(diǎn),所以,又因?yàn)?/span>,所以直線(xiàn)平面
試題解析:(Ⅰ)設(shè)與交于點(diǎn),連接.
因?yàn)樗倪呅?/span>是平行四邊形,所以是是的中點(diǎn),又是的中點(diǎn),
所以.又因?yàn)?/span>是的中點(diǎn),所以.
所以,所以四邊形是平行四邊形,所以.
又因?yàn)?/span>平面, 平面,所以直線(xiàn)平面.
(Ⅱ)因?yàn)?/span>,所以平行四邊形是菱形,所以.
因?yàn)?/span>, 是的中點(diǎn),所以,
又所以.
又因?yàn)?/span>,所以≌,
所以,故,即.
又平面, 平面,
所以直線(xiàn)平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某經(jīng)銷(xiāo)商從外地一水殖廠(chǎng)購(gòu)進(jìn)一批小龍蝦,并隨機(jī)抽取40只進(jìn)行統(tǒng)計(jì),按重量分類(lèi)統(tǒng)計(jì)結(jié)果如下圖:
(1)記事件為:“從這批小龍蝦中任取一只,重量不超過(guò)35的小龍蝦”,求的估計(jì)值;
(2)試估計(jì)這批小龍蝦的平均重量;
(3)為適應(yīng)市場(chǎng)需求,制定促銷(xiāo)策略.該經(jīng)銷(xiāo)商又將這批小龍蝦分成三個(gè)等級(jí),并制定出銷(xiāo)售單價(jià),如下表:
等級(jí) | 一等品 | 二等品 | 三等品 |
重量() | |||
單價(jià)(元/只) | 1.2 | 1.5 | 1.8 |
試估算該經(jīng)銷(xiāo)商以每千克至多花多少元(取整數(shù))收購(gòu)這批小龍蝦,才能獲得利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}為等差數(shù)列,前n項(xiàng)和為Sn(n∈N*),{bn}是首項(xiàng)為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(Ⅰ)求{an}和{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{a2nbn}的前n項(xiàng)和(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠(chǎng)家擬在2017年舉行促銷(xiāo)活動(dòng),經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷(xiāo)售量(即該廠(chǎng)的年產(chǎn)量)(單位:萬(wàn)件)與年促銷(xiāo)費(fèi)用(單位:萬(wàn)元)()滿(mǎn)足( 為常數(shù)),如果不搞促銷(xiāo)活動(dòng),則該產(chǎn)品的年銷(xiāo)售量只能是1萬(wàn)件.已知2017年生產(chǎn)該產(chǎn)品的固定投入為8萬(wàn)元.每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元,廠(chǎng)家將每件產(chǎn)品的銷(xiāo)售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將2017年該產(chǎn)品的利潤(rùn)(單位:萬(wàn)元)表示為年促銷(xiāo)費(fèi)用(單位:萬(wàn)元)的函數(shù);
(2)該廠(chǎng)家2017年的促銷(xiāo)費(fèi)用投入多少萬(wàn)元時(shí),廠(chǎng)家的利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】孝感星河天街購(gòu)物廣場(chǎng)某營(yíng)銷(xiāo)部門(mén)隨機(jī)抽查了100名市民在2017年國(guó)慶長(zhǎng)假期間購(gòu)物廣場(chǎng)的消費(fèi)金額,所得數(shù)據(jù)如表,已知消費(fèi)金額不超過(guò)3千元與超過(guò)3千元的人數(shù)比恰為3:2.
(1)試確定, , , 的值,并補(bǔ)全頻率分布直方圖(如圖);
(2)用分層抽樣的方法從消費(fèi)金額在和的兩個(gè)群體中抽取5人進(jìn)行問(wèn)卷調(diào)查,則各小組應(yīng)抽取幾人?若從這5人中隨機(jī)選取2人,則此2人來(lái)自同一群體的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙: 與⊙: ,以, 分別為左右焦點(diǎn)的橢圓: 經(jīng)過(guò)兩圓的交點(diǎn)。
(Ⅰ)求橢圓的方程;
(Ⅱ)、是橢圓上的兩點(diǎn),若直線(xiàn)與的斜率之積為,試問(wèn)的面積是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省2016年高中數(shù)學(xué)學(xué)業(yè)水平測(cè)試的原始成績(jī)采用百分制,發(fā)布成績(jī)使用等級(jí)制.各等制劃分標(biāo)準(zhǔn)為:85分及以上,記為等;分?jǐn)?shù)在內(nèi),記為等;分?jǐn)?shù)在內(nèi),記為等;60分以下,記為等.同時(shí)認(rèn)定為合格, 為不合格.已知甲,乙兩所學(xué)校學(xué)生的原始成績(jī)均分布在內(nèi),為了比較兩校學(xué)生的成績(jī),分別抽取50名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),按照的分組作出甲校的樣本頻率分布直方圖如圖1所示,乙校的樣本中等級(jí)為的所有數(shù)據(jù)莖葉圖如圖2所示.
(Ⅰ)求圖1中的值,并根據(jù)樣本數(shù)據(jù)比較甲乙兩校的合格率;
(Ⅱ)在選取的樣本中,從甲,乙兩校等級(jí)的學(xué)生中隨機(jī)抽取3名學(xué)生進(jìn)行調(diào)研,用表示所抽取的3名學(xué)生中甲校的學(xué)生人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校用簡(jiǎn)單隨機(jī)抽樣方法抽取了30名同學(xué),對(duì)其每月平均課外閱讀時(shí)間(單位:小時(shí))進(jìn)行調(diào)查,莖葉圖如圖:
若將月均課外閱讀時(shí)間不低于30小時(shí)的學(xué)生稱(chēng)為“讀書(shū)迷”.
(1)將頻率視為概率,估計(jì)該校900名學(xué)生中“讀書(shū)迷”有多少人?
(2)從已抽取的7名“讀書(shū)迷”中隨機(jī)抽取男、女“讀書(shū)迷”各1人,參加讀書(shū)日宣傳活動(dòng).
(i)共有多少種不同的抽取方法?
(ii)求抽取的男、女兩位“讀書(shū)迷”月均讀書(shū)時(shí)間相差不超過(guò)2小時(shí)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣2x﹣1.
(1)求f(x)的函數(shù)解析式;
(2)作出函數(shù)f(x)的簡(jiǎn)圖,寫(xiě)出函數(shù)f(x)的單調(diào)減區(qū)間及最值.
(3)若關(guān)于x的方程f(x)=m有兩個(gè)解,試說(shuō)出實(shí)數(shù)m的取值范圍.(只要寫(xiě)出結(jié)果,不用給出證明過(guò)程)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com