有下列四個命題:
①“若-2≤x≤0,則(x+2)(x-3)≤0”的逆否命題;
②x>2是x2-3x+2>0的充分不必要條件;
③平面內(nèi)有兩定點A,B及動點P,則命題甲“|PA|+|PB|是定值”是命題乙“點P的軌跡是以A,B為焦點的橢圓”的充要條件;
④“a=1”是“函數(shù)y=cos(2ax)的最小正周期為π”的充要條件;
其中真命題的序號是(寫出所有的真命題)
 
考點:命題的真假判斷與應(yīng)用
專題:簡易邏輯
分析:①原命題正確正確,利用原命題與其逆否命題等價關(guān)系即可判斷出;
②由x2-3x+2>0解得x>2或x<1,即可判斷出;
③利用橢圓的定義即可判斷出;
④“a=±1”是“函數(shù)y=cos(2ax)的最小正周期為π”的充要條件.
解答: 解:①“若-2≤x≤0,則(x+2)(x-3)≤0”正確,其逆否命題也正確;
②由x2-3x+2>0解得x>2或x<1,因此x>2是x2-3x+2>0的充分不必要條件,正確;
③平面內(nèi)有兩定點A,B及動點P,則命題乙⇒命題甲,反之不成立,若命題甲“|PA|+|PB|=|AB|是定值”,此時點P的軌跡是線段|AB|,因此命題甲是命題乙的必要非充分條件,不正確;
④“a=±1”是“函數(shù)y=cos(2ax)的最小正周期為π”的充要條件,因此不正確;
其中真命題的序號是①②.
故答案為:①②.
點評:本題考查了簡易邏輯的判定、橢圓的定義、三角函數(shù)的周期性,考查了推理能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1的左右焦點分別為F1,F(xiàn)2,過左焦點F1作直線l與雙曲線左右兩支分別交于A、B兩點,若△ABF2為正三角形,則雙曲線的漸近線方程為(  )
A、x±
3
y=0
B、x±
6
y=0
C、
3
x±y=0
D、
6
x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點,過F1傾斜角為45°的直線與雙曲線的右支交于點P,若|PF2|=|F1F2|,雙曲線的離心率為(  )
A、
2
B、
2
+1
C、
2
-1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,an>an+1,其前n項的積為Tn(n∈NΦ),若T13=4T9,則a8-a15=(  )
A、±2B、±4C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=f(x)與函數(shù)y=f(4-x)的圖象關(guān)于直線x=2對稱;
②若在R上連續(xù)的函數(shù)f(x)是增函數(shù),則對任意x0∈R均有f′(x)>0成立;
③已知函數(shù)y=2sin(ωx+θ)(ω>0,0<θ<π)為偶函數(shù),其圖象與直線y=2的交點的橫坐標為x1x2.若|x1-x2|的最小值為π,則ω的值為2,θ的值為
π
2
;
④底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐.
其中正確的命題是
 
.(把所有正確的命題的選項都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題是真命題的是( 。
A、a,b是兩條直線,α是一個平面,b?α,若a∥b,則a∥α
B、若l∥α,則l平行與α內(nèi)的所有直線
C、m?α,l?β且l⊥m,則α⊥β
D、若l?β,l⊥α,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

時下,租車已成為新一代的流行詞,租車自駕游也慢慢流行起來.已知甲、乙兩人租車自駕到黃山游玩,某小車租車點的收費標準是:不超過兩天按照300元計算;超過兩天的部分每天收費標準為100元(不足一天部分按1天計算).有甲、乙兩人相互獨立來該租車點租車自駕游(各租一車一次),設(shè)甲、乙不超過兩天還車的概率分別為
1
3
,
1
2
;2天以上且不超過3天還車的概率分別為
1
2
,
1
3
;兩人租車時間都不會超過4天.
(I)求甲所付租車費用大于乙所付租車費用的概率;
(II)設(shè)甲、乙兩人所付租車費用之和為隨機變量ξ,求ξ的分布列與數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某一隨機變量的分布列如下:則常數(shù)q等于(  )
X123
P0.41-3qq
A、0.1B、0.2
C、0.3D、0.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=(2x2-a2x-a)lgx的值域為[0,+∞),則a的值為( 。
A、1B、-1C、2D、-2

查看答案和解析>>

同步練習(xí)冊答案