兩千多年前,古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問(wèn)題,他們?cè)谏碁┥袭?huà)點(diǎn)或用小石子來(lái)表示數(shù),按照點(diǎn)或小石子能排列的形狀對(duì)數(shù)進(jìn)行分類(lèi),如圖中的實(shí)心點(diǎn)個(gè)數(shù)1,5,12,22, ,被稱(chēng)為五角形數(shù),其中第1個(gè)五角形數(shù)記作,第2個(gè)五角形數(shù)記作,第3個(gè)五角形數(shù)記作,第4個(gè)五角形數(shù)記作, ,若按此規(guī)律繼續(xù)下去,則      ,若,則         .

1         5            12                    22    

試題分析:根據(jù)示意圖:可得,,

當(dāng)時(shí),也成立,∴,∴,令.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

觀察以下個(gè)等式:





照以上式子規(guī)律:
寫(xiě)出第個(gè)等式,并猜想第個(gè)等式;
用數(shù)學(xué)歸納法證明上述所猜想的第個(gè)等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果右邊的程序執(zhí)行后輸出的結(jié)果是1320,那么在程序UNTIL后面的條件應(yīng)為(  )
A.i<=10B.i<10C.i>=11D.i>11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖是一商場(chǎng)某一個(gè)時(shí)間制訂銷(xiāo)售計(jì)劃時(shí)的局部結(jié)構(gòu)圖,則“計(jì)劃”受影響的主要要素有______個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)等差數(shù)列的前項(xiàng)和為,則,,,
成等差數(shù)列.類(lèi)比以上結(jié)論有:設(shè)等比數(shù)列的前項(xiàng)積為,則成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)表示不超過(guò)的最大整數(shù),如.我們發(fā)現(xiàn):

;
;
.......
通過(guò)合情推理,寫(xiě)出一般性的結(jié)論  (用含的式子表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

對(duì)于任意正整數(shù)n,定義“”如下:
當(dāng)n是偶數(shù)時(shí),,
當(dāng)n是奇數(shù)時(shí),
現(xiàn)在有如下四個(gè)命題:

;
的個(gè)位數(shù)是0;
的個(gè)位數(shù)是5。
其中正確的命題有(   )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

甲、乙、丙三位同學(xué)被問(wèn)到是否去過(guò)三個(gè)城市時(shí),
甲說(shuō):我去過(guò)的城市比乙多,但沒(méi)去過(guò)城市;
乙說(shuō):我沒(méi)去過(guò)城市.
丙說(shuō):我們?nèi)齻(gè)去過(guò)同一城市.
由此可判斷乙去過(guò)的城市為_(kāi)_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

由直線與圓相切時(shí),圓心到切點(diǎn)連線與直線垂直,想到平面與球相切時(shí),球心與切點(diǎn)連線與平面垂直,用的是()
A.歸納推理B.演繹推理C.類(lèi)比推理D.傳遞性推理

查看答案和解析>>

同步練習(xí)冊(cè)答案