若不等式(-1)n-1(2a-1)<()n對(duì)一切正整數(shù)n恒成立,則實(shí)數(shù)a的取值范圍是________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)是a1=1,前n項(xiàng)和為Sn,且Sn+1=2Sn+3n+1(n∈N*).
(1)設(shè)bn=an+3(n∈N*),求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)cn=log2bn,若存在常數(shù)k,使不等式k≥
cn-1(n+25)cn
(n∈N*)
恒成立,求k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+xlnx,(a∈R)
(1)當(dāng)a=-
1
2
時(shí),判斷函數(shù)f(x)在定義域內(nèi)的單調(diào)性并給予證明;
(2)在區(qū)間(1,2)內(nèi)任取兩個(gè)實(shí)數(shù)p,q,且p≠q,若不等式
f(p+1)-f(q+1)
p-q
>1恒成立,求實(shí)數(shù)a的取值范圍;
(3)求證:
ln2
23
+
ln3
33
+
ln4
43
+…+
lnn
n3
1
e
(其中n>1,n∈N*,e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1為由曲線y=
x
,直線y=x-2及y軸
所圍成圖形的面積的
3
32
Sn為該數(shù)列的前n項(xiàng)和,且Sn+1=an(1-an+1)+Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若不等式an+an+1+an+2+…+a3n
a
24
對(duì)一切正整數(shù)n都成立,求正整數(shù)a的最大值,并證明結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淮北一模)設(shè)函數(shù)f(x)=
x
a(x+2)
方程f(x)=x有唯一的解,已知f(xn)=xn+1(n∈N﹡)且f(x1)=
2
3

(1)求證:數(shù)列{
1
xn
}是等差數(shù)列;
(2)若an=
4-3xn
xn
,bn=
1
anan+1
,求sn=b1+b2+b3+…+bn;
(3)在(2)的冬件下,若不等式
k
(
1
a1
+1)(
1
a2
+1)…(
1
an
+1)
1
2n+1
對(duì)一切n∈N﹡均成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,已知a1=1,n≥2時(shí),an=
1
3
an-1+
2
3n-1
-
2
3
.?dāng)?shù)列{bn}滿足:bn=3n-1(an+1)(n∈N*)
(1)證明:{bn}為等差數(shù)列,并求{bn}的通項(xiàng)公式;
(2)記數(shù)列{
an+1
n
}
的前n項(xiàng)和為Sn,若不等式
Sn-m
Sn+1-m
3m
3m+1
成立(m,n為正整數(shù)).求出所有符合條件的有序?qū)崝?shù)對(duì)(m,n).

查看答案和解析>>

同步練習(xí)冊(cè)答案