【題目】下列說法:將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差恒不變;設有一個回歸方程,變量增加一個單位時,平均增加5個單位;線性回歸方程必過;在吸煙與患肺病這兩個分類變量的計算中,從獨立性檢驗知,有99%的把握認為吸煙與患肺病有關系時,我們說某人吸煙,那么他有99%的可能患肺。黄渲绣e誤的個數(shù)是(

A.0 B.1 C. 2 D.3

【答案】C

【解析】

試題分析:由方差的定義與性質(zhì)可知,將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差恒不變,所以上正確的;回歸方程為,變量增加一個單位時,平均增加個單位,所以是錯誤的;線性回歸方程必過樣本中心點,所以是正確的;有99%的把握認為吸煙與患肺病有關系時,說某人吸煙,不能認為他有99%的可能患肺病,所以是錯誤的;即正確命題有兩個,故選C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù))的圖象與直線)相切,并且切點橫坐標依次成公差為的等差數(shù)列,且的最大值為1.

(1),求函數(shù)的單調(diào)遞增區(qū)間;

(2)將的圖象向左平移個單位,得到函數(shù)的圖象,若函數(shù)上有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三棱柱中,已知分別為,的中點,點上,且求證:

(1)直線平面;

(2)直線平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角所對的邊分別為,且

(1)求角的大;

(2)若,求周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,橢圓的離心率為,是橢圓的右焦點直線的斜率為,為坐標原點

(1)求的方程;

(2)設過點的動直線相交于兩點,的面積最大時,的直線方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解小學生的體能情況,抽取了某小學同年級部分學生進行跳繩測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖所示),已知圖中從左到右前三個小組的頻率分別時0.1,0.3,0.4,第一小組的頻數(shù)為5.

(1)求第四小組的頻率?

(2)問參加這次測試的學生人數(shù)是多少?

(3)問在這次測試中,學生跳繩次數(shù)的中位數(shù)落在第幾小組內(nèi)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線為參數(shù)),曲線為參數(shù)).

I)設相交于兩點,求;

II)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線.設點是曲線上的一個動點,求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用兩種原料,已知每種產(chǎn)品各生產(chǎn)噸所需原料及每天原料的可用限額如下表所示,如果生產(chǎn)噸甲產(chǎn)品可獲利潤3萬元,生產(chǎn)噸乙產(chǎn)品可獲利萬元,則該企業(yè)每天可獲得最大利潤為___________萬元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),

(1)當時,求函數(shù)的單調(diào)區(qū)間及所有零點;

(2)設,,為函數(shù)圖象上的三個不同點,且

.問:是否存在實數(shù),使得函數(shù)在點處的切線與直線平行?若存在,求出所有滿足條件的實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案