函數(shù)y=x2+1在x=2處的導數(shù)是( 。
A、5B、4C、3D、2
考點:導數(shù)的運算
專題:導數(shù)的概念及應用
分析:根據(jù)導數(shù)的公式,直接進行計算即可得到結(jié)論.
解答: 解:∵y=f(x)=x2+1,
∴f′(x)=2x,
∴f′(2)=2×2=4,
故選:B.
點評:本題主要考查導數(shù)的計算,要求熟練掌握常見函數(shù)的導數(shù)公式,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,A=30°,C=45°,c=20,則邊a的長為(  )
A、10
6
B、10
2
C、20
3
D、20
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關(guān)于x的方程x2+mx+
1
4
=0有兩個不相等的實數(shù)根,則實數(shù)m的取值范圍是( 。
A、(-1,1)
B、(-∞,-1)∪(1,+∞)
C、(-∞,-2)∪(2,+∞)
D、(-2,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將函數(shù)y=2sin(2x+
π
3
)的圖象平移后所得的圖象對應的函數(shù)為y=cos2x,則進行的平移是(  )
A、向右平移
π
12
個單位
B、向左平移
π
12
個單位
C、向右平移
π
6
個單位
D、向左平移
π
6
個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從只有3張中獎的10張彩票中不放回隨機逐張抽取,設(shè)X表示直至抽到中獎彩票時的次數(shù),則P(X=3)=(  )
A、
3
10
B、
7
10
C、
21
40
D、
7
40

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

工廠生產(chǎn)某種電子元件,假設(shè)生產(chǎn)一件正品,可獲利200元;生產(chǎn)一件次品,則損失100元.已知該廠制造電子元件的過程中,次品率P與日產(chǎn)量x的函數(shù)關(guān)系是P=
3x
4x+32
(x∈N*
(1)將該產(chǎn)品的日盈利額T(元)表示為日產(chǎn)量x(件)的函數(shù);
(2)為獲得最大利潤,該廠的日產(chǎn)量應定為多少件?并求出最大的利潤為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(ωx-
π
3
)(ω>0)的最小正周期為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)將函數(shù)f(x)的圖象向左平移
π
6
個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象.求y=g(x)在區(qū)間[0,10π]上零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)點F(1,0),M點在x軸上,點P在y軸上,且
MN
=2
MP
,PM⊥PF,當點P在y軸上運動.
(1)求點N的軌跡C的方程.
(2)設(shè)Q為直線x+1=0上的動點,過Q作C的兩條切線l1,l2,切點分別為A與B
     ①證明:l1⊥l2
     ②證明:直線AB過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos2(x-
π
4
)-sin2(x-
π
4
)-
2
sin(x-
π
4
)cosx.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)銳角三角形ABC的三內(nèi)角分別為角A、B、C且f(
A
2
-
π
8
)=
2+
6
4
,求sinB+sinC的取值范圍.

查看答案和解析>>

同步練習冊答案