若數(shù)列{an},(n∈N*)是等差數(shù)列,則有數(shù)列bn=
a1+a2+…+an
n
(n∈N*)也是等差數(shù)列,類(lèi)比上述性質(zhì),相應(yīng)地:若數(shù)列{cn}是等比數(shù)列,且cn>0(n∈N*),則有dn=
 
(n∈N*)也是等比數(shù)列.
考點(diǎn):類(lèi)比推理
專(zhuān)題:探究型,推理和證明
分析:在類(lèi)比等差數(shù)列的性質(zhì)推理等比數(shù)列的性質(zhì)時(shí),由加法類(lèi)比推理為乘法,由減法類(lèi)比推理為除法,由算術(shù)平均數(shù)類(lèi)比推理為幾何平均數(shù)等,可得結(jié)論.
解答: 解:數(shù)列{an},(n∈N*)是等差數(shù)列,則有數(shù)列bn=
a1+a2+…+an
n
(n∈N*)也是等差數(shù)列.
類(lèi)比推斷:若數(shù)列{cn}是各項(xiàng)均為正數(shù)的等比數(shù)列,則當(dāng)dn=
nc1c2cn
時(shí),數(shù)列{dn}也是等比數(shù)列.
故答案為:
nc1c2cn
點(diǎn)評(píng):本題主要考查了類(lèi)比推理,找出兩類(lèi)事物之間的相似性或一致性,用一類(lèi)事物的性質(zhì)去推測(cè)另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α的終邊經(jīng)過(guò)點(diǎn)P(m,2m)(m≠0).
(1)求tanα的值;
(2)求
sin(π-α)+cos(-α)
cos(
π
2
-α)+cos(π+α)
的值;
(3)求
1
sin2α-sinαcosα+2cos2α
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某列火車(chē)從A地開(kāi)往B地,全程277km,火車(chē)出發(fā)10分鐘開(kāi)出13km后,以120km/h勻速行駛.
(1)寫(xiě)出火車(chē)行駛的總路程S與勻速行駛所用的時(shí)間t之間的函數(shù)關(guān)系式;
(2)求火車(chē)離開(kāi)A地2h時(shí)行駛的路程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一長(zhǎng)為3km,寬為2km缺一角A的長(zhǎng)方形土地,如圖所示,準(zhǔn)備在此處建一高樓,EF是直線段,AE=0.2km,AF=0.5km,設(shè)計(jì)師要在BC的中點(diǎn)M處作EF延長(zhǎng)線的垂線,應(yīng)如何畫(huà)線并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩點(diǎn)M(-1,0),N(1,0),并且點(diǎn)P使
MP
MN
PM
PN
,
MN
NP
成公差小于0的等差數(shù)列.點(diǎn)P的軌跡是什么曲線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,AB=1,AA1=2,M是AB1上的動(dòng)點(diǎn),且AM=λAB1,N是CC1的中點(diǎn).
(Ⅰ)若λ=
1
2
,求證:MN⊥AA1;
(Ⅱ)若直線MN與平面ABN所成角的正弦值為
3
14
,試求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x||x-2|≤a},B={x|x2-5x+4≥0},若A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,直線l的方程為ρsin(θ+
π
4
)=
2
2
,則點(diǎn)A(2,
4
)到直線l的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
π
0
cos2xdx=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案