在△ABC中,若AC⊥BC,BC=a,AC=b,則△ABC的外接圓半徑為r=
a2+b2
2
,將此結(jié)論類比到空間,可得到正確的結(jié)論:在四面體S-ABC中,若SA,SB,SC兩兩垂直,SA=a,SB=b,SC=c,則四面體S-ABC的外接球半徑為R=
 
考點:類比推理
專題:規(guī)律型,推理和證明
分析:可將圖形補成以SA,SB,SC為相鄰的邊的長方體,運用長方體的對角線即為外接球的直徑,即可得出結(jié)論.
解答: 解:由平面圖形的性質(zhì)類比推理空間圖形的性質(zhì)時
一般是由點的性質(zhì)類比推理到線的性質(zhì),
由線的性質(zhì)類比推理到面的性質(zhì),
由圓的性質(zhì)推理到球的性質(zhì).
由已知在平面幾何中,△ABC中,若AB⊥AC,AC=b,BC=a,
則△ABC的外接圓半徑r=
a2+b2
2
,
我們可以類比這一性質(zhì),推理出:
在四面體S-ABC中,若SA、SB、SC兩兩垂直,SA=a,SB=b,SC=c,
則構(gòu)造以S為頂點,SA,SB,SC為長方體的相鄰的三條棱,其外接球的直徑為長方體的對角線,可得四面體S-ABC的外接球半徑R=
a2+b2+c2
2

故答案為:
a2+b2+c2
2
點評:由平面圖形的性質(zhì)類比推理空間圖形的性質(zhì)時,一般是由點的性質(zhì)類比推理到線的性質(zhì),由線的性質(zhì)類比推理到面的性質(zhì),由圓的性質(zhì)推理到球的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠ACB=90°,∠A=60°,AB=20,過C作△ABC的外接圓的切線CD,BD⊥CD,BD與外接圓交于點E,求DE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC的外接圓⊙O的半徑為5,CE垂直于⊙O所在的平面,BD∥CE,CE=4,BC=6,且BD=1,cos∠ADB=
101
101

(1)求證:平面AEC⊥平面BCED;
(2)試問線段DE上是否存在點M,使得直線AM與平面ACE所成角的正弦值為
2
21
21
?若存在,確定點M的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米及其以上空氣質(zhì)量為超標(biāo).某試點城市環(huán)保局從該市市區(qū)2012年全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機抽取5天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為莖,個位為葉),若從這5天的數(shù)據(jù)中隨機抽出2天.
(1)求恰有一天空氣質(zhì)量超標(biāo)的概率;
(2)求至多有一天空氣質(zhì)量超標(biāo)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(3,2),
a
+
b
=(0,2),則|
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察如圖的三角形數(shù)陣,依此規(guī)律,則第61行的第2個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從0,1,2,3,4,5,6,7,8,9中任取3個不同的數(shù),則這3個數(shù)的平均數(shù)是6的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C過點(-1,0),且圓心在x軸的負(fù)半軸上,直線l:y=x+1被該圓所截得的弦長為2
2
,則圓C的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2-9n,則a5等于
 

查看答案和解析>>

同步練習(xí)冊答案